Skip to main content

Nonlinearity: Historical and Technological View

  • Conference paper
Nonlinearity in Condensed Matter

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 69))

Abstract

The title of this conference causes us to ask about the meaning of Condensed Matter Physics and of nonlinearity. The ambiguities in Condensed Matter Physics are trivial, and need no belaboring. Every highly developed branch of science has borderline subjects which can be excluded, or included, according to taste. The ambiguity in nonlinear is deeper, and reflects the mode of description. We tend to consider classical motion in a constant, linear, or quadratic potential as linear and refer to anharmonicity when we go beyond that. But the Hamilton-Jacobi equation, even for a free particle, is already nonlinear. On the other hand the Schrödinger equation is always linear, no matter how complex the potential, and as a limiting case can always describe the classical Hamilton-Jacobi equation. The classical Liouville equation is also linear and represents the universal trick for making things look linear, in the case of deterministic problems. We populate the space, in which the solutions evolve, with a density, and all the real complexities are shifted to the description of the motion of a point in this solution space. The kind of linearity obtained via the Liouville equation does not require deterministic behavior, the master equation is also linear, and treats stochastic problems. The low field Hall current, in crossed electric and magnetic fields, represents a linear conductance, if we consider the magnetic field to be a parameter. If, however, we consider electric and magnetic fields as simultaneous components of a total electromagnetic field, then it is clearly nonlinear. Chaos is taken as a symptom of nonlinearity. We can, however, ask about the deviations from a given chaotic solution and return to linearity [1]. It is possible that there is some kind of rational path through this perplexity, and that there is a broadly applicable definition of nonlinearity. I do not know about it, and interpret nonlinear in a more phenomenological sense. Nonlinearity has to do with thresholds, with multi-stability, with hysteresis, with phenomena which change qualitatively as we change excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Heldstab, H. Thomas, T. Geisel, G. Radons: Z. Phys. B 50, 141 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. T. Geisel, J. Heldstab, H. Thomas: Z. Phys. B 55, 165 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Grossmann: Z. Phys. B 57, 77 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  4. For a charming review of the very early stages of ferroelectricity, see G. Bush: Heiv. Phys. Acta 59, 1 (1986)

    Google Scholar 

  5. R. Peierls: Bird of Passage,(Princeton Univ. Press, Princeton, 1985) see p.40–45

    Google Scholar 

  6. A. Cottrell: Contemp. Phys. 21, 85 (1980)

    Article  ADS  Google Scholar 

  7. P. W. Anderson: Science 177, 393 (1972)

    Article  ADS  Google Scholar 

  8. S. L. Glashow: Phys. Today 39, 11 (Feb., 1986 )

    Google Scholar 

  9. This paragraph adapted from R. Landauer: Am. J. Physiology 10, R107 (1981)

    Google Scholar 

  10. R. Landauer: In The Physics of Structure and Complexity,Physica Scripta, to be published

    Google Scholar 

  11. E. N. Lorenz: J. Atmos. Sci. 20, 130 (1963)

    Article  ADS  Google Scholar 

  12. R. M. May: Nature 261, 459 (1976)

    Article  ADS  Google Scholar 

  13. N. Minorsky: Introduction to Non-Linear Mechanics, ( Edwards, Ann Arbor, 1947 )

    Google Scholar 

  14. H. Busch: Stabilität, Labilität und Pendelungen in der Elektrotechnik (S. Hirzel, Leipzig, 1913 )

    MATH  Google Scholar 

  15. R. A. Schmitz: In Chemical Reaction Engineering Reviews, ed. by H. M. Hulburt ( Am. Chem. Soc., Washington, D.C., 1975 ) p. 156

    Chapter  Google Scholar 

  16. R. Aris: In Bifurcation Theory and its Applications in Scientific Disciplines, ed. by O. E. Rössler, O. Gurel (N. Y. Acad. Sci., 1979 ) p. 314

    Google Scholar 

  17. M. P. Kennedy, L. O. Chua: Van der Pol and Chaos,IEEE Trans. on Circuits and Systems, to be published

    Google Scholar 

  18. B. van der Pol, J. van der Mark: Nature 120, 333 (1927)

    Google Scholar 

  19. M. Van Exter, A. Lagendijk: Phys. Lett. 99A, 1 (1983)

    Article  Google Scholar 

  20. M. L. Cartwright, J. E. Littlewood: J. London Math. Soc. 20, 180 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Levi: Qualitative analysis of the periodically forced relaxation oscillations (Am. Math. Soc., Providence, 1981 )

    Google Scholar 

  22. L. W. Casperson, H. J. Orchard: Periodic and Chaotic Pulsations in Ring Oscillator Networks,preprint

    Google Scholar 

  23. Y. S. Tang, A. I. Mees, L. O. Chua: IEEE Trans. CAS-30, 620 (1983)

    Article  Google Scholar 

  24. J. P. Gollub, T. O. Brunner, B. G. Danly: Science 200, 50 (7 April 1978 )

    Google Scholar 

  25. J. P. Gollub, E. J. Romer, J. E. Socolar: J. Stat. Phys. 23, 321 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. O. Roessler: Private communication

    Google Scholar 

  27. T. Matsumoto, L. O. Chua, M. Komuro: IEEE Trans. CAS-32, 798 (1985)

    MathSciNet  Google Scholar 

  28. F. Hendriks: IBM J. Res. Dev. 27, 273 (1983)

    Article  Google Scholar 

  29. J. A. Blackburn, Z. Yang, S. Vik: Phys. Lett. 114A, 500 (1986)

    Article  Google Scholar 

  30. A. B. Pippard: Interdisciplinary Science Reviews 7, 92 (1982)

    Google Scholar 

  31. S. E. Brown, G. Groner, L. Mihaly: Solid State Comm 57, 165 (1986)

    Article  ADS  Google Scholar 

  32. J. W. S. Rayleigh: Philos. Mag. 15, 229 (1883)

    Google Scholar 

  33. J. von Neumann: U.S. Patent 2,815,488, filed April 28, 1954, issued December 3, 1957

    Google Scholar 

  34. E. Goto: J. Elec. Commun. Engrs. Japan 38, 770 (1955)

    Google Scholar 

  35. R. L. Wigington: Proc. IRE 47, 516 (1959)

    Article  Google Scholar 

  36. A. Uhlir, Jr.: Proc. IRE 46, 1099 (1958)

    Article  Google Scholar 

  37. R. W. Keyes, R. Landauer: IBM J. Res. Dev. 14, 152 (1970)

    Article  Google Scholar 

  38. K. K. Likharev: Int. J. Theor. Phys. 21, 311 (1982)

    Article  Google Scholar 

  39. K. K. Likharev, S. V. Rylov, V. K. Semenov: IEEE Trans. MAG-21, 947 (1985)

    Google Scholar 

  40. R. Landauer: A Personal View of Nonlinear Electromagnetic Wave Propagation,February, 1985, unpublished essay

    Google Scholar 

  41. J. M. Manley, H. E. Rowe: Proc. IRE 44, 904 (1956)

    Article  Google Scholar 

  42. H. Salinger: Arch. Elektrotech. 12, 268 (1923)

    Article  Google Scholar 

  43. R. Y. Chiao, E. Garmire, C. H. Townes: Phys. Rev. Lett. 13, 479 (1964)

    Article  ADS  Google Scholar 

  44. R. J. Joenk, R. Landauer: Phys. Lett. 24A, 228 (1967)

    Article  Google Scholar 

  45. F. DeMartini, C. H. Townes, T. K. Gustafson, P. L. Kelley: Phys. Rev. 164, 312 (1967)

    Article  ADS  Google Scholar 

  46. H. A. Kramers: Physica 7, 284 (1940)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. P. Hanggi: J. Stat. Phys. 42, 105 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  48. P. Hanggi, H. Thomas: Phys. Rep. 88, 207 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  49. N. G. van Kampen: Stochastic Processes in Physics and Chemistry ( North-Holland, Amsterdam, 1981 )

    MATH  Google Scholar 

  50. C. W. Gardiner: Handbook of Stochastic Methods ( Springer, Heidelberg, 1983 )

    MATH  Google Scholar 

  51. H. Haken: Rev. Mod. Phys. 47, 67 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  52. R. Landauer: In Self-Organizing Systems: The Emergence of Order,ed. by F. E. Yates, D. O. Walter, G. B. Yates (Plenum, New York, in press)

    Google Scholar 

  53. R. Landauer: Helv. Phys. Acta 56, 847 (1983)

    Google Scholar 

  54. R. Landauer: Phys. Rev. A 12, 636 (1975)

    Article  ADS  Google Scholar 

  55. M. Kirkpatrick: Am. Nat. 119, 833 (1982)

    Article  Google Scholar 

  56. R. Lande: Proc. Natl. Acad. Sci. 82, 7641 (1985)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. R. Lewin: Science 231, 672 (1986)

    Article  ADS  Google Scholar 

  58. J. Levinton: Science 231, 1490 (1986)

    Article  ADS  Google Scholar 

  59. C. M. Newman, J. E. Cohen, C. Kipnis: Nature 315, 399 (1985)

    Article  ADS  Google Scholar 

  60. S. Wright: In Experimental Results and Evolutionary Deductions (Univ. Chicago Press, Chicago, 1977 ) p. 443

    Google Scholar 

  61. B-O. Köppers: In Der Informationsbegriff in Technik und Wissenschaft ed. by O. G. Folberth, C. Hackl ( Oldenbourg, München, 1986 ) p. 181

    Google Scholar 

  62. W. Ebeling: In Strukturbildung Bei Irreversiblen Prozèssen ( Teubner, Leipzig, 1976 ) p. 168

    Google Scholar 

  63. H. Kuhn, C. Kuhn: Origins of Life 9, 137 (1978)

    Article  ADS  Google Scholar 

  64. P. W. Anderson, D. L. Stein: In [43]

    Google Scholar 

  65. P. W. Anderson: Proc. Nat. Acad. Sci. 80, 3386 (1983)

    Article  ADS  Google Scholar 

  66. Nonlinear Phenomena at Phase Transitions and Instabilities ed. by T. Riste (Plenum, New York, 1982)

    Google Scholar 

  67. Physics in One Dimension ed. by J. Bernasconi, T. Schneider (Springer, Heidelberg, 1981)

    Google Scholar 

  68. Nonlinear Problems: Present and Future ed. by A. Bishop, D. Campbell, B. Nicolaenko (North-Holland, Amsterdam, 1982)

    Google Scholar 

  69. S. Chandrasekhar: Rev. Mod. Phys. 15, 1 (1943)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. J. S. Langer: In Systems Far from Equilibrium ed. by L. Garrido ( Springer, Heidelberg, 1980 ) p. 12

    Chapter  Google Scholar 

  71. F. A. Lindemann: Trans. Faraday Soc. 17, 598 (1922)

    Article  Google Scholar 

  72. J. A. Christiansen. Ph.D. Thesis, Copenhagen, 1921

    Google Scholar 

  73. J. A. Christiansen, H. A. Kramers: Z. Phys. Chem. 104, 451 (1923)

    Google Scholar 

  74. D. Chandler: J. Stat. Phys. 42, 49 (1986)

    Article  ADS  Google Scholar 

  75. G. R. Fleming, S. H. Courtney, M. W. Balk: 83

    Google Scholar 

  76. J. T. Hynes: 149; H. Frauenfelder, P. G. Wolynes: Science 229, 337 (1985)

    Google Scholar 

  77. A. Nitzan: Non-Markovian Theory of Activated Rate Processes VI. Unimolecular Reactions in Condensed Phases,to be published

    Google Scholar 

  78. P. Hänggi, U. Weiss: Phys. Rev. A 29, 2265 (1984)

    Article  ADS  Google Scholar 

  79. H. Risken, K. Voigtlaender: J. Stat. Phys. 41, 825 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  80. F. Marchesoni: Phys. Rev. B 32, 1827 (1985)

    Article  ADS  Google Scholar 

  81. H. Dekker: Physica 135A, 80 (1986)

    Article  MathSciNet  Google Scholar 

  82. M. H. Devoret, J. M. Martinis, J. Clarke: Phys. Rev. Lett. 55, 1908 (1985)

    Article  ADS  Google Scholar 

  83. A. J. Leggett: Quantum Macroscopic Tunneling, Conf. on Nonlinearity in Condensed Matter (Los Alamos National Laboratory), May 5–9, 1986

    Google Scholar 

  84. H. Grabert: SQUID ’85 ed. by H. D. Hahlbohm, H. Lübbig (Walter de Gruyter, Berlin, 1986) p. 289

    Google Scholar 

  85. U. Weiss, P. Riseborough, P. Hanggi, H. Grabert: Phys. Lett. 104A, 10 (1984)

    Article  Google Scholar 

  86. H. Grabert, P. Olschowski, U. Weiss: Phys. Rev. B 32, 3348 (1985)

    Article  ADS  Google Scholar 

  87. S. Washburn, R. A. Webb, R. F. Voss, S. M. Faris: Phys. Rev. Lett. 54, 2712 (1985)

    Article  ADS  Google Scholar 

  88. J. M. Martinis, M. H. Devoret, J. Clarke: Phys. Rev. Lett. 55, 1543 (1985)

    Article  ADS  Google Scholar 

  89. M. Büttiker, R. Landauer: IBM J. Res. Dev. 30, No. 5 (September, 1986 )

    Google Scholar 

  90. Ref. [44], see paragraph preceding Sec. 4.

    Google Scholar 

  91. M. Büttiker, R. Landauer: In Nonlinear Phenomena at Phase Transitions and Instabilities ed. by T. Riste (Plenum, New York, 1982) p. 111, see Appendix

    Google Scholar 

  92. M. Büttiker, R. Landauer: Physica Scripta T9, 155 (1985), see Sec. 8

    Google Scholar 

  93. B. Derrida: J. Stat. Phys. 31, 433 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  94. For additional citations see T. Schneider, M. P. Soerensen, A. Politi, M. Zannetti: Phys. Rev. Lett. 56, 2341 (1986)

    Google Scholar 

  95. D. Kutasov: M. Sc. Thesis, Weizmann Institute

    Google Scholar 

  96. N. G. van Kampen: In Statistical Physics, Proceedings of the IUPAP International Conference,ed. by L. Pél, P. Szépfalusy (North-Holland, Amsterdam, 1976) see p. 31

    Google Scholar 

  97. N. G. van Kampen: In Advances in Chemical Physics, ed. by I. Prigogine, S. A. Rice ( Wiley, New York, 1976 ) p. 245

    Google Scholar 

  98. Y. Imry: In Memorial Volume in Honor of Prof. Shang-Keng Ma,ed. by G. Grinstein, G. Mazenko (World Scientific, Singapore, in press)

    Google Scholar 

  99. A. L. Robinson: Science 231, 22 (1986)

    Article  ADS  Google Scholar 

  100. J. Sinkonnen: In Proceedings of the Fourth International School on Physical Problems in Microelectronics,ed. by J. Kassabov (World Scientific, Singapore, in press)

    Google Scholar 

  101. Y. Imry: Europhys. Lett. 1, (5) 249 (1986)

    Article  ADS  Google Scholar 

  102. B. L. Al’tshuler, B. I. Shklovskii: Repulsion of Energy Levels and Conductance of Small Metallic Samples, Preprint 1166 ( Leningrad Nuclear Physics Institute, February 1986 )

    Google Scholar 

  103. H. Fukuyama, P. A. Lee, A. D. Stone: Universal Conductance Fluctuations in Metals: Effects of Finite Temperature, Interactions and Magnetic Field,preprint

    Google Scholar 

  104. R. Landauer: In Electrical Transport and Optical Properties of Inhomogeneous Media,ed. by J. C. Garland, D. B. Tanner (Am. Inst. Phys., New York, 1978) see p. 32, Sec. 11

    Google Scholar 

  105. R. E. Howard, L. D. Jackel, P. M. Mankiewich, W. J. Skocpol: Science 231, 346 (1986)

    Article  ADS  Google Scholar 

  106. R. A. Webb, A. Hartstein, J. J. Wainer, A. B. Fowler: Phys. Rev. Lett. 54, 1577 (1985)

    Article  ADS  Google Scholar 

  107. A. B. Fowler, G. L. Timp, J. J. Wainer, R. A. Webb: Observation of Resonant Tunneling in Silicon Inversion Layers,to be published

    Google Scholar 

  108. C. T. Rogers, R. A. Buhrman: Phys. Rev. Lett. 55, 859 (1985)

    Article  ADS  Google Scholar 

  109. R. H. Koch: In Noise in Physical Systems and 1 /f Noise, ed. by M. Savelli, G. Lecoy, J-P. Nougier ( Elsevier, New York, 1983 ) p. 377

    Google Scholar 

  110. M. E. Welland, R. H. Koch: Appl. Phys. Lett. 48, 724 (1986)

    Article  ADS  Google Scholar 

  111. B. Schwarzschild: Phys. Today 39, 17 (Jan. 1986)

    ADS  Google Scholar 

  112. M. Büttiker: In New Techniques and Ideas in Quantum Measurement Theory,ed. by D. Greenberger (N. Y. Acad. Sci., 1986) to be published. See also [64], [67]

    Google Scholar 

  113. B. L. Al’tshuler, D. E. Khmel’nitskii: JETP Lett. 42, 359 (1985)

    ADS  Google Scholar 

  114. C. M. Soukoulis, J. V. Jose, E. N. Economou, P. Sheng: Phys. Rev. Lett. 50, 764 (1983)

    Article  ADS  Google Scholar 

  115. E. Cota, J. V. Jose, M. Ya. Azbel: Phys. Rev. B 32, 6157 (1985)

    Article  ADS  Google Scholar 

  116. Ref. [68] see Sec. 9; R. S. Sorbello: In Macroscopic Properties of Disordered Media ed. by R. Burridge, S. Childress, G. Papanicolaou ( Springer, Heidelberg, 1982 ) p. 251

    Google Scholar 

  117. R. S. Sorbello: Phys. Rev. B 31, 798 (1985)

    Article  ADS  Google Scholar 

  118. A. H. Verbruggen: Electromigration and proton-Hall effect in metalhydrides, unpublished Ph.D. thesis ( Amsterdam, 1985 ). While I do not agree completely with the theoretical overview presented in Verbruggen’s thesis, it is probably the best overall review of the theory that is available

    Google Scholar 

  119. B. L. Al’tshuler: JETP Lett. 41, 648 (1985)

    ADS  Google Scholar 

  120. P. A. Lee, T. V. Ramakrishnan: Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  121. Ref. [68], Sec. 6, p. 7; R. Landauer: Phys. Rev. B 14, 1474 (1976)

    Google Scholar 

  122. M. Büttiker, Y. Imry, R. Landauer: Phys. Lett. 96A, 365 (1983)

    Article  Google Scholar 

  123. R. Landauer, M. Büttiker: Phys. Rev. Lett. 54, 2049 (1985)

    Article  ADS  Google Scholar 

  124. R. Landauer: Phys. Rev. B 33, 6497 (1986)

    Article  ADS  Google Scholar 

  125. E. Ben-Jacob, Y. Gefen: Phys. Lett. 108A, 289 (1985)

    Article  Google Scholar 

  126. K. K. Likharev, A. B. Zorin: J. Low Temp. Phys. 59, 347 (1985)

    Article  ADS  Google Scholar 

  127. D. V. Averin, A. B. Zorin, K. K. Likharev: Sov. Phys. JETP 61, 407 (1985)

    Google Scholar 

  128. D. V. Averin, K. K. Likharev: J. Low Temp. Phys. 62, 345 (1986)

    Article  ADS  Google Scholar 

  129. There are additional preprints from Likharev’s group; see also comments in last paragraph of [59]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Landauer, R. (1987). Nonlinearity: Historical and Technological View. In: Bishop, A.R., Campbell, D.K., Kumar, P., Trullinger, S.E. (eds) Nonlinearity in Condensed Matter. Springer Series in Solid-State Sciences, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83033-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83033-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83035-8

  • Online ISBN: 978-3-642-83033-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics