Dynamics of Foundations

  • J. Dominguez
  • R. Abascal
Part of the Topics in Boundary Element Research book series (TBOU, volume 4)

Abstract

Dynamics of foundations is part of the more general field dynamic soil-structure interaction, which is concerned with the study of structures based on flexible soils and subjected to dynamic actions that may be directly applied to the structure or transmited through the soil.

Keywords

Convolution Sine Como sinO Geomechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Whitman, R.V. and Richart, F.E. “Design procedures for dynamically loaded foundations”, Jour. Soil Mech. Fnd. Engrg. ASCE, 93, SM6, 1967, p. 169Google Scholar
  2. 2.
    Richart, F.E., Woods, R.D. and Hall, J.R. “Vibrations of soils and foundations”, Prentice-Hall, 1970Google Scholar
  3. 3.
    Reissner, E. “Stationäre, axialsymmetrische, durch eine schüttelnde Masse erregte Schwingung eines homonenen elastischen Halbraumes”. Ingenieur Archiv., Vol. 7, 1936, pp. 381–396MATHCrossRefGoogle Scholar
  4. 4.
    Arnold, R.N., Bycroft, G.N. and Warburton, G.B. “Forced Vibration of a Body on a Infinite Elastic Solid”. Jour. Appl. Mech., ASME, Vol. 22, No. 3, 1965, pp. 391–400Google Scholar
  5. 5.
    Bycroft, O.N. “Forced Vibration of a Rigid Circular Plate on a Semi-infinite Elastic Space or a Elastic Stratum”. Phil. Trans. Royal Soc. of London, 248, 1956, pp. 327–368MATHMathSciNetGoogle Scholar
  6. 6.
    Kobori, T., Minari, R. and Suzuki, T. “Dynamic ground compliance of rectangular foundation on an elastic stratum”, Proc. 2nd Japan Nat. Symp. on Earthquake Engrg., 1966, pp. 261–266Google Scholar
  7. 7.
    Collins, W.D. “The Forced Torsional Oscillations of an Elastic Half-Space and Elastic Stratum”. Proc. London Math. Soc., 12, No. 46, 1962, pp. 226–244MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Paul, H.S. “Vibration of a Rigid Circular Disk on an Infinite Elastic Plate”. Jour. Acoust. Soc. Am., 42, 1967, pp. 412–416MATHCrossRefGoogle Scholar
  9. 9.
    Veletsos, A.S. and Wei, Y.T. “Lateral and Rocking Vibration of footings”. Jour. Soil Mech. Found. Div., ASCE, 97, 1971, pp. 1227–1248Google Scholar
  10. 10.
    Luco, J.E. and Westmann, R.A. “Dynamic Response of Circular Foundations”. Jour. Eng. Mech. Div., ASCE, 97, 1971, pp. 1381–1395Google Scholar
  11. 11.
    Veletsos, A.S. and Verbic, B. “Vibration of Viscoelastic Foundation”. Jour. Geo. Eng. Div., ASCE, 100, 1973, pp. 225–246Google Scholar
  12. 12.
    Kobori, T., Minai, R. and Suzuki, T. “The dynamic ground compliance of a rectangular foundation on a viscoelastic stratum”. Bull. Disaster Prev. Res. Inst., Kyoto Univ., Japan. 1971Google Scholar
  13. 13.
    Wong, H.L. and Luco, J.E. “Dynamic Response of Rigid Foundations of Arbitrary Shape”, Earthquake Engineering and Structural Dynamics, 4, 1976Google Scholar
  14. 14.
    Lamb, H. “On the Propagation of Tremors over the Surface of a Elastic Solid”. Philosophical Trans. Royal Society of London, Series A, 203, 1904Google Scholar
  15. 15.
    Elorduy, J., Nieto, J.A. and Szekely, E.M. “Dynamic Response of Bases of Arbitrary Shape Subjected to Periodic Vertical Loading”. Proc. International Symp. on Wave Propagation and Dynamic Properties of Earth Materials, 1967Google Scholar
  16. 16.
    Kitamura, Y. and Sakurai, S. “Dynamic Stiffness for Rectangular Rigid Foundations on a Semi- infinite Elastic Medium”, International Jour, of Num. and Analytical Methods in Geomechanics, 1978Google Scholar
  17. 17.
    Domínguez, J. “Dynamic Stiffness of Rectangular Foundations”. Research Report R78–20, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass., Aug., 1978Google Scholar
  18. 18.
    Abascal, R., “Estudio de Problemas Dinámicos en Interacción Suelo-Estructura Mediante el Método de los Elementos de Contorno”, Thesis to the Escuela Superior de Ingenieros Industriales, at Seville, Spain, Fev., 1984Google Scholar
  19. 19.
    Abascal, R. and Domínguez, J. “Dynamic Behavior of Strip Footings on Non-homogeneous Viscoelastic Soils”. Int. Symposium on Dynamic Soil-Struct. Int., Minneapolis. Balkema. Roterdam, 1984Google Scholar
  20. 20.
    Gomez-Lera, S., Domínguez, J. and Alarcón, E. “On the Use of 3-D Fundamental Solutions for Axisymmetric Steady-State Dynamic Problems”. Proc. of the 7th Int. Conference on BEM in Engineering. Edt. C.A. Brebbia, 1985Google Scholar
  21. 21.
    Apsel, R.J. “Dynamic Green’s Functions for Layered Media and Applications to Boundary-Value Problems”, Thesis presented to the University of California, at San Diego, 1979Google Scholar
  22. 22.
    Karabalis, D.L. and Beskos, D.E. “Dynamic Response of 3-D Rigid Surface Foundations by Time Domain Boundary Element Method”. Earthquake Engineering and Structural Dynamics, Vol. 12, No. 1, 1984, pp. 73–94CrossRefGoogle Scholar
  23. 23.
    Karabalis, D.L., Spyrakos, C.C. and Beskos, D.E. “Dynamic Response of Surface Foundations by Time Domain BEM”. Int. Symposium on Dynamic Soil-Struct. Int., Minneapolis. Balkema, Roterdam, 1984Google Scholar
  24. 24.
    Waas, G. “Linear Two-Dimensional Analysis of Soil Dynamics Problems in Semi-Infinite Layered Media”. Thesis presented to the University of California, at Berkeley, 1972Google Scholar
  25. 25.
    Kausel, E. “Forced Vibrations of Circular Foundations on Layered Media”. Research Report R74–11, Civil Engineering Department, Massachusetts Institute of Technology, Cambridge, Mass., 1974Google Scholar
  26. 26.
    Trifunac, M.D. “Surface Motion of a Semicylindrical Alluvial Valley for Incident Plane SH Waves”, Bulletin of the Seismological Society of America, Vol. 61, 1971, pp. 1755–1770Google Scholar
  27. 27.
    Trifunac, M.D. “Scattering of Plane SH Waves by a Semicylindrical Canyon”, Earthquake Eng. and Stru. Dynamics, Vol. 1,1973, pp. 267–281CrossRefGoogle Scholar
  28. 28.
    Wong, H.L. and Trifunac, M.D. “Scattering of Plane SH Waves by a Semi-Elliptical Canyon”, Earthquake Engineering and Structural Dynamics, Vol. 3, 1974, pp. 157–169CrossRefGoogle Scholar
  29. 29.
    Wong, H.L. and Jennings, P.C. “Effect of Canyon Topography on Strong Ground Motion”, Bulletin of the Seismological Society of America, Vol. 65,1975, pp. 1239–1257Google Scholar
  30. 30.
    Sánchez-Sesma, F.J. and Rosenblueth, E. “Ground Motion at Caynons of Arbitrary Shapes Under Incident SH Waves”, Earthquake Engineering and Structural Dynamics, Vol. 7, No. 5, 1979, pp. 441–450CrossRefGoogle Scholar
  31. 31.
    Wong, H.L. “Diffraction of P, SV and Rayleigh Waves by Surface Topographies”, Report No. 79–05, Department of Civil Engineering, University of Southern California, Los Angeles, Calif., 1979Google Scholar
  32. 32.
    Dravinski, M. “Scattering of SH Waves by Subsurface Topography”. Journal of the Engineering Mechanics Division, ASCE, Vol. 108, No. EMI, Feb., 1982, pp. 1–7Google Scholar
  33. 33.
    Dravinski, M. “Scattering of Elastic Waves by on Alluvial Valley”. Journal of the Engineering Mechanics Division, ASCE, Vol. 108, No.EMI, Feb., 1982, pp. 19–31Google Scholar
  34. 34.
    Wong, H.L. and Luco, J.E. “Dynamic Response of Rectangular Foundations to Obliquely Incident Seismic Waves”, Earthquake Engineering and Structural Dynamics, Vol. 6,1978, pp. 3–16CrossRefGoogle Scholar
  35. 35.
    Kobori, R., Minai, R. and Shinozaki, Y. “Vibrations of a Rigid Circular Disc on an Elastic Half-Space Subjected to Plane Waves”, Theoretical and Applied Mechanics, 21, Univ. of Tokyo Press, 1973Google Scholar
  36. 36.
    Luco, J.E. “Torsional Response of Structures to Obliquely Incident Seismic SH Waves”, Earthquake Engineering and Structural Dynamics, Vol. 4,1976, pp. 207–219CrossRefGoogle Scholar
  37. 37.
    Domínguez, J. “Response of Embedded Foundations to Travelling Waves”. Research Report R78–24, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, Mass., Aug., 1978Google Scholar
  38. 38.
    Abascal, R. and Domínguez, J. “Dynamic behavior of strip footings on non-homogeneous viscoelastic soils”, Proc. Int. Symposium on Dynamic Soil-Struct. Int., Minneapolis, Minnesota, 1984, Balkema, RoterdamGoogle Scholar
  39. 39.
    Syrakos, C.C. “Dynamic Response of two Dimensional Foundations”. Ph D. Th., Univ. Minnesota, Minneapolis, MN, 1984Google Scholar
  40. 40.
    Karabalis, D.L. “Dynamic response of three dimensional foundations”. Ph. D. Thesis, Univ. of Minnesota, Minneapolis, 1984Google Scholar
  41. 41.
    Eringen, A.C. and Suhubi, E.S. “Elastodynamics”, Academic Press, New York, 1975MATHGoogle Scholar
  42. 42.
    Wheeler, L.T. and Sternberg, E. “Some Theorems in Classical Elastodynamics”, Archive for Rational Mechanics and Analysis, 1968, 31, 51MATHMathSciNetGoogle Scholar
  43. 43.
    Stokes, G.G. “On the Dynamical Theory of Diffraction”. Transactions of the Cambridge Philosophical Society, 1984, 9, 1Google Scholar
  44. 44.
    Graffi, D. “Sul Theorema di Reciprocità nella Dinamica dei Corpo Elasticità”, Memorie della Accademia delle Scienze, 1946–7, 4 Series 10, 103Google Scholar
  45. 45.
    Love, A.E.H. “The propagation of wave motion in an isotropie elastic solid medium”. Proc. London Math. Soc., 2,1,1904, pp. 231–344Google Scholar
  46. 46.
    Domínguez, J. and Abascal, R. “On fundamental solutions for the BIEM in static and dynamic elasticity”, Eng. Analysis, 1, 1984, pp. 128–134CrossRefGoogle Scholar
  47. 47.
    Kupradze, V.D. “Dynamical Problems in Elasticity”, Progress in Solid Mechanics (eds. Sneddon, I. N. and Hill, R.), Vol. 3, North-Holland, Amsterdam, 1963Google Scholar
  48. 48.
    Cole, D.M., Kosloff, D.D. and Minster, J.B. “A Numerical Boundary Integral Equation Method for Elastodynamics I”, Bulletin of the Seismological Society of America, Vol. 68,1978, pp. 1331–1357Google Scholar
  49. 49.
    Brebbia, C.A. “The BEM for engineers”, Pentech Press, London, 1978Google Scholar
  50. 50.
    Banerjee, P.K. and Butterfield, R. “Boundary Element Methods in Engineering Science”, McGraw- Hill, London, 1981MATHGoogle Scholar
  51. 51.
    Kitahara, M. “Applications of BIEM to eigenvalue problems of elastodynamics and thin plates”. Ph.D. Thesis Kyoto University, 1984Google Scholar
  52. 52.
    Abascal, R, and Domínguez, J. “Sobre la extensión y tamaño de la malla de elementos de contorno en los problemas de interacción sueloestructura”, Ier Congreso Iberoamericano de Met. Comp, en Ingeniería. Madrid, 1985Google Scholar
  53. 53.
    Elsabee, F. and Morray, J.P. “Dynamic Behavior of Embedded Foundations”, M.I.T. Research Report R77–33, September, 1977Google Scholar
  54. 54.
    Kansel, E. and Ushijima, R. “Vertical and torsional stiffness of cylindrical footing”, M.I.T., Report R-79–63, Civil Eng. Dept., 1979Google Scholar
  55. 55.
    Gazetas, G.C. and Roèsset, J.M. “Forced Vibrations of Strip Footings on Layered Soils”, Methods of Structural Analysis, ASCE, Vol. 1, 1976, pp. 115–131Google Scholar
  56. 56.
    Gazetas, G.C. and Roèsset, J.M. “Vertical Vibrations of Machine Foundations”, Journal of the Geo- technical Engineering Division, ASCE, Vol. 105, No. GT12, Dec., 1979, pp. 1435–1454Google Scholar
  57. 57.
    Abascal, R. and Domínguez, J. “Vibrations of Footings on Zoned Viscoelastic Soils. I”, Journal of Mechanical Engineering, ASCE. Accepted. To be published 1986Google Scholar
  58. 58.
    Mayr, M. “Ein Integralgleichungsverfahren zur Lösung rotationssymmetrischer Elastizitätsprobleme”, Dissertation, TU, München, 1975Google Scholar
  59. 59.
    Kermanidis, T.A. “Numerical Solution for Axially Symmetrical Elasticity Problems”, Journal of Solids and Structures, 1975, 11,493MATHCrossRefGoogle Scholar
  60. 60.
    Cruse, T.A., Snow, D.A. and Wilson, R.B. “Numerical Solutions in Axisymmetric Elasticity”, Computer and Structures, 1977, 7, 445MATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Rizzo, F.J. and Shippy, DJ. “Some observations on Kelvin’s solution in classical elastostatics as a double tensor field with implications for Somigliana’s integral”, J. of Elast., 13,1983, pp. 91–97MATHCrossRefGoogle Scholar
  62. 62.
    Wilson, E. “Structural analysis of axisymmetric solids”, AIAA Journ., 3,12,1965, p. 2269CrossRefGoogle Scholar
  63. 63.
    Cano Hurtado, J.J. “Cálculo de impedancias dinámicas de zapatas circulares rígidas en terrenos estratificados con amortiguamiento histerético”. Tesis Doctoral, Univers, de Valencia, 1985Google Scholar
  64. 64.
    Chapel, F. “Application de la méthode des équations intégrales à la dynamique des sols. Structures sur pieux”. These presentee a l’ecole Central des Arts et Manufactures. 1981Google Scholar
  65. 65.
    Luco, J.E. “LUCON: Theoretical and verification manual”. Bechtel Power Corp., 1974Google Scholar
  66. 66.
    Abascal, R. and Domínguez, J. “Dynamic response of embedded strip foundations subjected to obliquely incident waves”. Proc. of the 7th Int. Conf. on BEM, Como, Italy, 1985Google Scholar
  67. 67.
    Whittaker, W.L. and Christiano, P. “Dynamic response of flexible plates bearing on an elastic half-space”, Proc. of ASCE, Jour, of Eng. Mech, 1, 1982, pp. 133–154Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1987

Authors and Affiliations

  • J. Dominguez
  • R. Abascal

There are no affiliations available

Personalised recommendations