Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 2))

  • 83 Accesses

Abstract

Since the introduction of continuous positive airway pressure (CPAP), and controlled mechanical ventilation (CMV) with positive end-expiratory pressure (PEEP), considerable efforts were made to investigate the side effects of positive airway pressure on cardiocirculatory function. Numerous studies have revealed a partial cardiocirculatory stabilization by blood volume expansion [1] and/or catecholamines [2, 3] as well as by the use of intermittent mandatory ventilation (IMV) or continuous positive airway pressure (CPAP) [4, 5]. However, the negative effects of positive airway pressure on excretory renal function have been of little interest to investigators, even though the first report was already published in 1947 by Drury et al. [6], who observed a decrease in urine flow and urea clearance in healthy volunteers breathing against a CPAP of 40 mmHg. They concluded that “kidney function may be used as a measure of circulatory stress induced by a reduction of effective blood volume” and suggested breathing against positive pressure as a test of circulatory fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Qvist J, Pontopiddan H, Wilson RS, Lowenstein E, Laver MB (1975) Hemodynamic responses to mechanical ventilation with PEEP: The effect of hypervolemia. Anesthesiology 42:45–55

    Article  PubMed  CAS  Google Scholar 

  2. Augustin HJ, Bischoff K, Engels Th (1979) Der Einfluß von Dopamin auf die Nierenfunktion während kontinuierlicher Überdruckbeatmung (PEEP). Anaesthesist 28:159–162

    Google Scholar 

  3. Hemmer M, Suter PM (1979) Treatment of cardiac and renal effects of PEEP with dopamine in patients with acute respiratory failure. Anesthesiology 50:399–403

    Article  PubMed  CAS  Google Scholar 

  4. Steinhoff H, Falke K, Schwarzhoff W (1982) Enhanced renal function with intermittent mandatory ventilation in acute respiratory failure. Intensive Care Med 8:69–74

    Article  PubMed  CAS  Google Scholar 

  5. Hemmer M, Viquerat CE, Suter PM, Vallotton MB (1980) Urinary antidiuretic hormone excretion during mechanical ventilation and weaning in man. Anesthesiology 52:395–400

    Article  PubMed  CAS  Google Scholar 

  6. Drury DR, Henry JP, Goodman J (1947) The effects of continous pressure breathing on kidney function. J Clin Invest 26:945–951

    Article  CAS  Google Scholar 

  7. Schürmann T, Schwarzhoff W, Trampisch HJ, Falke KJ (1983) The mortality of surgical patients requiring mechanical ventilatory support. Intensivmed 20:75–79

    Google Scholar 

  8. Falke KJ, Steinhoff HH (1985) Renal function during acute respiratory failure. In: Zapol WM, Falke KJ (ed) Acute respiratory failure. Marcel Dekker Inc, New York, pp 577–597

    Google Scholar 

  9. Baratz RA, Philbin DM, Patterson RW (1970) Urinary output and plasma level of antidiuretic hormone during intermittent positive-pressure breathing in the dog. Anesthesiology 32:17–22

    Article  PubMed  CAS  Google Scholar 

  10. Philbin DM, Baratz RA, Patterson RW (1970) The effect of carbon dioxide on plasma antidiuretic hormone levels during intermittent positive-pressure breathing. Anesthesiology 33:345–349

    Article  PubMed  CAS  Google Scholar 

  11. Priebe HJ, Heiman JC, Hedley-White J (1981) Mechanisms of renal dysfunction during positive end-expiratory pressure ventilation. J Appl Physiol 50:643–649

    PubMed  CAS  Google Scholar 

  12. Murdaugh HV, Siker HO, Manfredi F (1959) Effect of altered intrathoracic pressure on renal hemodynamics, electrolyte excretion and water clearance. J Clin Invest 38:834–842

    Article  PubMed  Google Scholar 

  13. Khambatta HJ, Baratz RA (1972) IPPB, plasma ADH, and urine flow in conscious man. J Appl Physiol 33:362–364

    PubMed  CAS  Google Scholar 

  14. Kumar A, Pontoppidan H, Baratz RA, Laver MB (1974) Inapproriate response to increased plasma ADH during mechanical ventilation in acute respiratory failure. Anesthesiology 40:215–220

    Article  PubMed  CAS  Google Scholar 

  15. Annat G, Viale JP, Xuan BB, et al (1983) Effect of PEEP ventilation on renal function, plasma renin, aldosterone, neurophysins and urinary ADH, and prostaglandins. Anesthesiology 58:136–141

    Article  PubMed  CAS  Google Scholar 

  16. Baratz RA, Ingraham RC (1960) Renal hemodynamics and antidiuretic hormone release associated with volume regulation. Am J Physiol 198:565–570

    PubMed  CAS  Google Scholar 

  17. Fewell JE, Bond GC (1979) Renal denervation eliminates the renal response to continuous positive-pressure ventilation. Proc Exp Biol Med 161:574–578

    CAS  Google Scholar 

  18. Hall SV, Johnson EE, Hedley-White J (1974) Renal hemodynamic function with continuous positive-pressure ventilation in dogs. Anesthesiology 41:452–461

    Article  PubMed  CAS  Google Scholar 

  19. Steinhoff H, Samodelov LF, Trampisch HJ, Falke KJ (1985) Cardiac afferents and the renal response to positive pressure ventilation in the dog. Intensive Care Med 12:147–152

    Google Scholar 

  20. Steinhoff H, Kohlhoff RJ, Falke KJ (1984) Facilitation of excretory function and hemodynamics of the kidneys by intermittent mandatory ventilation. Intensive Care Med 10:59- 64

    Article  PubMed  CAS  Google Scholar 

  21. Gammanpila S, Bevan DR, Bhudu R (1977) Effect of positive and negative expiratory pressure on renal function. Br J Anaesth 49:199–205

    Article  PubMed  CAS  Google Scholar 

  22. Moore ES, Galvez MP, Paton JB, Fisher DE, Behrmann RE (1974) Effects of positive pressure ventilation on intrarenal blood flow in infant primates. Pediatr Res 8:792–796

    PubMed  CAS  Google Scholar 

  23. Katz MA, Shear L (1975) Effects of renal nerves on renal hemodynamics. I. Direct stimulation and carotid occlusion. Nephron 14:246–254

    Article  PubMed  CAS  Google Scholar 

  24. Gruskin ASB, Edelmann CM Jr, Yuan S (1970) Maturational changes in renal blood flow in piglets. Pediatr Res 4:7–11

    PubMed  CAS  Google Scholar 

  25. Jose PA, Logan AG, Slotkoff LM, Lilienfeld LS, Calcagno PL, Eisner GM (1971) Intrarenal blood flow distribution in canine puppies. Pediatr Res 5:335–340

    Article  PubMed  CAS  Google Scholar 

  26. Fenn WO, Otis AB, Rahn H, Chadwick LE, Hergnauer AH (1947) Displacement of blood from the lung by pressure breathing. Am J Physiol 151:258–265

    PubMed  CAS  Google Scholar 

  27. Marquez JM, Douglas ME, Downs JB, Wen-Hsien W, Mantini EL, Kuck EJ, Calderwood HW (1979) Renal function and cardiovascular responses during positive airway pressure. Anesthesiology 50:393–398

    Article  PubMed  CAS  Google Scholar 

  28. Fewell JE, Bond GC (1980) Role of sinaortic baroreceptors in initiating the renal response to continuous positive-pressure ventilation in the dog. Anesthesiology 52:408–413

    Article  PubMed  CAS  Google Scholar 

  29. Share L (1976) Role of cardiovascular receptors in the control of ADH release. Cardiology 61 (Suppl 1): 51–57

    Article  PubMed  Google Scholar 

  30. Share L, Levy MN (1966) Carotid sinus pulse pressure, a determinant of plasma antidiuretic hormone concentration. Am J Physiol 211:721–728

    PubMed  CAS  Google Scholar 

  31. Deetjen P (1970) Nierenphysiologie. In: Gauer OH, Kramer K, Jung R (Hrsg) Physiologie des Menschen, Bd 7. Urban & Schwarzenberg, München Berlin Wien

    Google Scholar 

  32. Kirchheim H, Gross R (1970) Das Verhalten der Nierendurchblutung und des Nierenum- fangs bei Blutdrucksteigerungen durch doppelseitigen Carotisverschluß oder Schrittma- chertachycardie. Untersuchungen zur Autoregulation der Nierendurchblutung am wachen Hund. Arch Ges Physiol 193:79–96

    Google Scholar 

  33. Gauer OH, Henry JP, Sieker HO, Wendt WE (1954) The effect of negative pressure breathing on urine flow. J Clin Invest 33:287–296

    Article  PubMed  CAS  Google Scholar 

  34. Baratz RA, Philbin DM, Patterson RW (1971) Plasma antidiuretic hormone and urinary output during continuous positive-pressure breathing in dogs. Anesthesiology 34:510–513

    Article  PubMed  CAS  Google Scholar 

  35. Tarak TK, Chaudhury RR (1965) The mechanism of positive pressure respiration induced antidiuresis. Clin Sei 28:407–412

    CAS  Google Scholar 

  36. Agostini E, Chinnock JE, De Burgh Daly M, Murray JG (1957) Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135:182–205

    Google Scholar 

  37. Thibault G, Garcia R, Cantin M, Genest M (1983) Atrial natriuretic factor. Characterization on partial purification. Hypertension 5 (Suppl):75–80

    CAS  Google Scholar 

  38. Trippodo NC, Macphee AA, Cole FE (1983) Partially purified human and rat atrial natriuretic factor. Hypertension 5 (Suppl):81–88

    CAS  Google Scholar 

  39. De Bold AJ (1979) Heart-atria granularity effects of changes in water and electrolyte balance. Proc Soc Exp Biol (N.Y.) 161:508–512

    Google Scholar 

  40. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sei 28:89- 94

    Article  Google Scholar 

  41. Lockett MF (1967) Hormonal action of the heart and of the lungs on the isolated kidney. J Physiol 193:661–669

    PubMed  CAS  Google Scholar 

  42. Lockett MF, Retallack RW, Sayers L (1972) The extent of the destruction during passage through the lungs of a substance secreted by the heart. J Physiol 225:477–484

    PubMed  CAS  Google Scholar 

  43. Paintal P (1973) Vagal sensory receptors. Physiol Rev 53:183–197

    Google Scholar 

  44. Watkins L, Burton JA, Haber JE (1976) The renin angiotension aldosterone system in congestive failure in conscious dogs. J Clin Invest 57:1606

    Article  PubMed  CAS  Google Scholar 

  45. Ziegler M, Janzik W, Mirschke L, Möhring H, Weigand W, Gross F (1974) Effects of positive and negative pressure breathing on plasma renin concentration in the dog. Pflügers Arch 348:185–196

    Article  CAS  Google Scholar 

  46. Kaukinen S, Eerola R (1979) Positive end-expiratory pressure ventilation, renal function and renin. Ann Clin Res 11:58–62

    PubMed  CAS  Google Scholar 

  47. Cox JR, Davies-Jones GAB, Leonhard PJ, Singer B (1963) The effect of positive pressure respiration on urinary aldosterone excretion. Clin Sei 24:1

    CAS  Google Scholar 

  48. Bark H, Le Roith D, Nyska M, Glick SM (1980) Elevations in plasma ADH levels during PEEP ventilation in the dog: mechanisms involved. Am J Physiol 239:E474

    PubMed  CAS  Google Scholar 

  49. Venus B, Mathru M, Smith RA, Pham CG, Shirakawa Y, Sugiura A (1985) Renal function during application of positive end-expiratory pressure in swine: effects of hydration. Anesthesiology 62:765–769

    Article  PubMed  CAS  Google Scholar 

  50. Zapol WM, Snider MT (1977) Pulmonary hypertension in severe acute pulmonary failure. N Engl J Med 296:476–480

    Article  PubMed  CAS  Google Scholar 

  51. Järnberg PO, Dominguez de Villotta E, Eklund J, Granberg PO (1978) Effects of positive end-expiratory pressure on renal function. Acta Anaesthesiol Scand 22:508–514

    Article  PubMed  Google Scholar 

  52. Marquez J, Guntupalli K, Gladen A, Klain M (1983) Renal function and renin secretion during high frequency jet ventilation at varying levels of airway pressure. Crit Care Med 11:930–932

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steinhoff, H.H., Bergmann, J., Falke, K.J. (1987). Renal Effects of Mechanical Ventilation. In: Vincent, J.L., Suter, P.M. (eds) Cardiopulmonary Interactions in Acute Respiratory Failure. Update in Intensive Care and Emergency Medicine, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83010-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83010-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17474-5

  • Online ISBN: 978-3-642-83010-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics