Circulatory Effects of Mechanical Ventilation

  • D. M. Payen
  • S. Beloucif
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 2)


All techniques used for positive pressure breathing — intermittent positive pressure ventilation (IPPV), continuous positive pressure ventilation (CPPV), continuous positive airway pressure (CPAP) or high frequency ventilation (HFV) [1] — result in an increase in intrathoracic pressure (Pinth) [2]. As mentioned in other chapters, Pinth elevation can decrease cardiac output (CO) and/or systemic arterial pressure (SAP) [3]. The magnitude of these hemodynamic changes is largely dependent on the pulmonary compliance, the level of Pinth increase, the underlying disease and the integrity of the cardiovascular reflexes.


Continuous Positive Airway Pressure Myocardial Blood Flow Coronary Blood Flow Systemic Arterial Pressure Portal Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang HK, Harf A (1984) High frequency ventilation: a review. Resp Physiol 57:135–152CrossRefGoogle Scholar
  2. 2.
    Dorinsky PM, Whitcomb ME (1983) The effect of PEEP on cardiac output. Chest 84:210- 216PubMedCrossRefGoogle Scholar
  3. 3.
    Luce JM (1984) The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA 252:807–811PubMedCrossRefGoogle Scholar
  4. 4.
    Strangaard S (1976) Autoregulation of cerebral blood flow in hypertensive patiens. Stroke 53:720–727Google Scholar
  5. 5.
    Milnor WR (1982) In: Milnor WR (ed) Hemodynamics. Williams & Wilkins, Baltimore London, pp 25–29Google Scholar
  6. 6.
    Wagner EH, Traytsman RJ (1983) Cerebral venous outflow and arterial microsphere flow with elevated venous pressure. Am J Physiol 138:H 505-H 512Google Scholar
  7. 7.
    Luce JM, Huseby JS, Kirk W, Butler J (1982) A starling resistor regulates venous outflow in dogs. J Appl Physiol 53:1496–1503PubMedGoogle Scholar
  8. 8.
    Huseby JS, Luce JM, Cary JM, Paulin EG, Butler J (1981) Effects of positive end-expira- tory pressure on intracranial pressure in dogs with intracranial hypertension. J Neurosurg 55:704–707PubMedCrossRefGoogle Scholar
  9. 9.
    Apuzzo MLJ, Weiss MN, Pertersons V, Small RB, Kurze T, Heiden JS (1977) Effect of positive end-expiratory pressure ventilation on intracranial pressure in man. J Neurosurg 46:227–232PubMedCrossRefGoogle Scholar
  10. 10.
    Payen DM, Levy BI, Menegalli DJ, Lajat Y, Levenson J A, Nicolas FM (1982) Evaluation of human hemispheric blood flow based on non invasive carotid blood flow measurements using the range gated Doppler technique. Stroke 13:382–398CrossRefGoogle Scholar
  11. 11.
    Payen D, Levy B, Pinaud M (1983) Effects of PEEP on human phasic carotid hemodynamics. J of Cereb Blood Flow & Metabol 3, Suppl:634–635Google Scholar
  12. 12.
    Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205PubMedGoogle Scholar
  13. 13.
    Marcus ML (1983) The coronary circulation in health and disease. Marcus ML (ed), Mc Graw HillGoogle Scholar
  14. 14.
    Bellamy RF (1978) Diastolic coronary artery pressure-flow relations in the dog. Circ Res 43:92–101PubMedGoogle Scholar
  15. 15.
    Lowenson HS, Khouri EM, Gregg DE, Pyle RL, Patterson RE (1976) Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 39:760–766Google Scholar
  16. 16.
    Robotham JL, Cherry D, Mitzner W, Rabson JL, Lixfeld W, Bromberger-Barnea B (1983) A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation. Crit Care Med 11:783–793PubMedCrossRefGoogle Scholar
  17. 17.
    Chilian WM, Marcus ML (1985) Effects of coronary and extravascular pressure on intra- myocardial and epicardial blood velocity. Am J Physiol 248:H170-H178PubMedGoogle Scholar
  18. 18.
    Venus B, Jacobs HK (1984) Alterations in regional myocardial blood flows during different levels of positive end-expiratory pressure. Crit Care Med 12:96–101PubMedCrossRefGoogle Scholar
  19. 19.
    Payen D, Bousseau D, Laborde F et al (1986) Comparison of per-operative and post-operative phasic blood flow in aortocoronary venous bypass grafts by means of pulsed Echo Doppler with implantable microprobes. Circulation Suppl III, 74 (in press)Google Scholar
  20. 20.
    Bousseau D, Payen DM, Laborde F, Beloucif S, Echter E, Piwnica A (1985) Effects of PEEP on human post-operative coronary bypass graft flow. Anesthesiology 63: A 518CrossRefGoogle Scholar
  21. 21.
    Payen D, Caraco JJ, Beloucif S, Bousseau D, Laborde F, Piwnica A (in press) Effects of positive pressure breathing on systolic and diastolic coronary bypass graft flow in humans. AnesthesiologyGoogle Scholar
  22. 22.
    Brenner BM, Zatz R, Ichikawa I (1986) The Renal Circulation. In: Brenner BM, Rector FC (Eds) The kidney, WB Saunders Co, pp 93–123Google Scholar
  23. 23.
    Dibona GF (1982) The function of the renal nerves. Rev Physiol Biochem Pharmacol 94:76–181Google Scholar
  24. 24.
    Berry AJ (1981) Respiratory support and renal function. Anesthesiology 55:655–667PubMedCrossRefGoogle Scholar
  25. 25.
    Hall SV, Johnson EE, Hedley-Whyte J (1974) Renal hemodynamic and function with continuous positive-pressure ventilation in dogs. Anesthesiology 41:452–461PubMedCrossRefGoogle Scholar
  26. 26.
    Payen D, Farge D, Beloucif S, De la Coussaye JE, Chiron B, Wirquin V (in press) No involvement of ADH in acute antidiuresis during PEEP ventilation in humans. AnesthesiologyGoogle Scholar
  27. 27.
    Fewell JE, Bond GC (1979) Renal denervation eliminates the renal response to continuous positive pressure ventilation. Proe Soc Exp Biol Med 161:574–578Google Scholar
  28. 28.
    Richardson PDI (1982) Physiological regulation of the hepatic circulation. Fed Proc 41:2111–2116PubMedGoogle Scholar
  29. 29.
    Gioia FR, Harris AP, Traystman RJ, Rogers MC (1986) Organ blood flow during high frequency ventilation of low and high airway pressure in dogs. Anesthesiology 65:50–55PubMedCrossRefGoogle Scholar
  30. 30.
    Hugues RL, Mathie RT, Fitch W, Campbell D (1979) Liver blood flow and oxygen consumption during hypocapnia and IPPV in the greyhound. J Appl Physiol 47:290–295Google Scholar
  31. 31.
    Johnson EE, Hedley-Whyte J (1972) Continuous positive-pressure ventilation and portal blood flow in dogs with pulmonary edema. J Appl Physiol 33:385–389PubMedGoogle Scholar
  32. 32.
    Bredenberg CE, Paskanik A, Fromm D (1981) Portal hemodynamics in dogs during mechanical ventilation with positive end-expiratory pressure. Surgery 90:817–822PubMedGoogle Scholar
  33. 33.
    Bonnet F, Richard C, Glaser P, Lafay M, Guesde R (1982) Changes in hepatic flow induced by continuous positive pressure ventilation in critically ill patients. Crit Care Med 10:703- 705PubMedCrossRefGoogle Scholar
  34. 34.
    Winso O, Biber B, Gustausson B, Holm C, Milsom I, Niemand D (1986) Portal blood flow in man during graded positive end-expiratory pressure ventilation. Intensive Care Med 12:80–85PubMedCrossRefGoogle Scholar
  35. 35.
    Baile EM, Albert RK, Kirk W, et al (1984) Positive end-expiratory pressure decreases bronchial blood flow in the dog. J Appl Physiol 56:1289–1293PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. M. Payen
  • S. Beloucif

There are no affiliations available

Personalised recommendations