Advertisement

Boundary Element Method for Deterministic and Stochastic Shape Design Sensitivity Analysis

  • T. Burczyński
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

A general approach to shape design sensitivity analysis using boundary elements is presented.A variation method for variable regions and the adjoint system method are applied to obtain computable expressions for the effect of deterministic and stochastic boundary shape variation on functionals and eigen-values arising in the optimal design problems.To illustrate the application of the boundary element method in shape design sensitivity analysis a plane elastic structural component is calculated.

Keywords

Boundary Element Boundary Element Method Domain Versus Adjoint System Shape Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burczynski,T.;Adamczyk,T.:The boundary element formulation for multiparameter structural shape optimization.Appl. Math. Modelling, 9(3)(1985) 195–200.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Burczynski,T.;Adamczyk,T.:The boundary element method for shape design synthesis of elastic structures.Boundary Elements VII /eds.C.A.Brebbia,G.Maier/,Vol.II,SpringerVerlag,Berlin,New York 1985 12/93–12/106.Google Scholar
  3. 3.
    Burczynski,T.:The boundary element procedure for dependence of eigenvalues with respect to stochastic shape of elastic systems.Proc.25 Symp.PTMTS,Kudowa 1986,Vol.II,235–238.Google Scholar
  4. 4.
    Burczyrnski,T.;Mr6wczynska,B.:Application of boundary and finite elements in shape design sensitivity analysis.Proc. 8 Conf. Comp.Meth.Struct.Mech.,Warsaw 1987 /in Polish/.Google Scholar
  5. 5.
    MotaSoares,C.A.;Rodrigues,H.C.;Choi,K.K.:Shape optimal structural design using boundary elements and minimum compliance techniques.J.Mech.Trans.Aut.Design,84-DET-57.Google Scholar
  6. 6.
    Cruse,T.A.;Rizzo,F.J./eds./:Boundary integral equation method.ASME New York 1975.Google Scholar
  7. 7.
    Niva,Y.;Kobayashi,S.;Kitahara,M.:Determination of eigenvalues by boundary element methods.Chap.6 in Developments in Bound.Element Meth.-2/eds.P.K.Banerjee,R.P.Shaw/ASP 1982Google Scholar
  8. 8.
    Choi,K.K.;Haug,E,J.:Shape design sensitivity analysis of elastic structures.J.Struct.Mech. 11(2)(1983)231–269.Google Scholar
  9. 9.
    Dems,K.;Mrdz,Z.:Variation methods in optimal design and identification problems of structures.Proc. 5 Conf.Comp. Meth.Struct.Mech.,Wroclaw 1981,Vol.3,3–23 /in Polish/.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • T. Burczyński
    • 1
  1. 1.Institute of Mechanics and Fundamentals of Machine DesignSilesian Technical UniversityGliwicePoland

Personalised recommendations