Advertisement

Geometrically Nonlinear Analysis of Elastic Plates by the Boundary Element Method

  • N. Kamiya
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

The direct boundary element formulation is presented for the finite deflection of thin elastic plate subjected to mechanical and thermal loads. The integral equations for the Karman-type coupled governing field equation in terms of the basic boundary values and for the simplified Berger equation are shown and compared. The lower order derivative of the deflection appearing in the domain integrals facilitates numerical computation during iteration for the geometrically nonlinear analysis.

Keywords

Boundary Element Boundary Element Method Domain Integral Boundary Integral Equation Transverse Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stern, M., Int. J. Solids Struct., 15 (1979) 769–782.MATHCrossRefGoogle Scholar
  2. 2.
    Bezine, G. P., and Gramby, D. A., Recent Advances in Boundary Element Methods, Brebbia, C. A. ed., Pentech Press, London, (1978) 327–342.Google Scholar
  3. 3.
    Morjaria, M., and Mukherjee, S., J. Appl. Mech., 47 (1980) 291–296.ADSMATHCrossRefGoogle Scholar
  4. 4.
    Telles, J. F. C., The Boundary Element Method Applied to Inelastic Problems, Springer Ver., Berlin et.al., (1983).MATHGoogle Scholar
  5. 5.
    Brebbia, C. A., Telles, J. F. C., and Wrobel, L. C., Boundary Element Techniquesi Theory and Applications in Engineering, Springer Ver., Berlin et.al., (1984).Google Scholar
  6. 6.
    Kamiya, N., and Sawaki, Y., Int. J. Nonlinear Mech., 17 (1982) 187–194.ADSMATHCrossRefGoogle Scholar
  7. 7.
    Kamiya, N., Sawaki, Y., Nakamura, Y., and Fukui, A., Appl. Meth. Model., 6 (1982) 23–27.MATHCrossRefGoogle Scholar
  8. 8.
    Berger, H. M., J. Appl. Mech., 22 (1955) 465–472.MathSciNetMATHGoogle Scholar
  9. 9.
    Kamiya, N., and Sawaki, Y., Zeit. ang. Math. Mech., 62 (1982) 651–655.MATHGoogle Scholar
  10. 10.
    Ye, T. Q., and Liu, Y., Appl. Math. Model., 9 (1985) 183–188.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ye, T. Q., and Liu, Y., Proc. Int. Conf. Boundary Elements, Beijing, 1986, Du, Q., ed., Pergamon Press, Oxford et. al., (1986) 367–374.Google Scholar
  12. 12.
    Tanaka, M., Developments in Boundary Element Methods-3, Banerjee, P. K., and Mukherjee, S., eds., Elsevier Appl. Sci. Pub., London et.al., (1984).Google Scholar
  13. 13.
    Kamiya, N., and Sawaki, Y., Topics in Boundary Element Methods, Vol. 1., Chap. 9., Brebbia, C. A., ed., Springer Ver., Berlin et.al.,(1983)Google Scholar
  14. 14.
    Mukherjee, S. M., Boundary Element Methods in Creep and Fracture, Appl. Sci., Pub., London et.al., (1984).Google Scholar
  15. 15.
    Mukherjee, S., Int. J. Solids Struct., 13 (1977) 331–335.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • N. Kamiya
    • 1
  1. 1.Department of Mechanical EngineeringNagoya UniversityChikusaku, Nagoya 464Japan

Personalised recommendations