Advertisement

Hybrid Formulation for the Green Function in Stratified Media: Application to Wave Scattering Against Lateral Heterogeneities

  • D. Aubry
  • J. M. Crépel
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Abstract

The method of boundary integral equations has been applied for the study of elastic wave propagation and diffraction for a long time [11]. Compared to other numerical techniques its major advantage is the ease with which Sommerfeld radiation conditions can be dealt with in unbounded domains. However the method is somewhat limited to homogeneous media or to only a few different materials.

Keywords

Green Function Boundary Integral Equation Observation Level Diffract Field Stratify Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achenbach J.D., Gautesen A.K., Mc Maken (1983) Ray methods for waves in elastic solids. Pitman.Google Scholar
  2. 2.
    Aki K., Richards P.G. (1980) Quantitative seismology Theory and Methods, Freeman, San Francisco.Google Scholar
  3. 3.
    Aubry D., Chapel F., Crepel J.M. (1985) Interaction sol-structure linéaire sur un sol hétérogène, Génie Parasismique (V. Davidovici ed.), Presses ENPC, VI, pp 485–506.Google Scholar
  4. 4.
    Aubry D., Chapel F., Crepel J.M. (1985) Calcul sismique de fondations sur pieux, Génie Parasismique ( V. Davidovici ed. ), Presses ENPC, VI, pp 533–547.Google Scholar
  5. 5.
    Chapel F. (1981) Application de la méthode des équations intégrales à la dynamique des sols, Thèse de Docteur Ingénieur, Ecole Centrale de Paris.Google Scholar
  6. 6.
    Chapel F., Tsakaladis C. (1985) Computation of the Green’s functions of elastodynamics for a layered half space through a Hankel transform. Applications to foundation vibration and seismology, Numerical Methods in Geomechanics (Ed. Kawamoto, Ichikawa), Balkema, pp 1311–1318..Google Scholar
  7. 7.
    Chapel F. (1986) Application de la méthode des équations intégrales à l’interaction sol-structure linéaire sur un sol hétérogène. Actes ler Colloque Français de Génie Parasismique..Ass. Française Génie Parasismique. 4, 37–48.Google Scholar
  8. 8.
    Chu L.L., Askar A., Cakmak A.S. (1981) An approximate method for soil-structure interaction for SH-waves–The Born approximation, Earthquake Engineering and Structural Dynamics, 9, pp 205–219.CrossRefGoogle Scholar
  9. 9.
    Felsen L.B. (1984) Hybrid formulation of wave propagation and scattering, Martinus Nijhoff Publishers.Google Scholar
  10. 10.
    Kennett B.L.N. (1983) Seismic wave propagation in stratified media, Cambridge University Press.Google Scholar
  11. 11.
    Kupradze V.D. (1963) Dynamical Problems in Elasticity, Progress in Solid Mechanics, North Holland.Google Scholar
  12. 12.
    Luco J.E., Apsel R.J. (1982) On the Green’s functions for layered media: part land 2, Bull. Seism. Soc. Amer., 73, 4, pp 909–931.Google Scholar
  13. 13.
    Tsakaladis C. (1985) Diffraction d’ondes sismiques sur les structures sur pieux et fonctions de Green du sol multicouche. Thèse de Docteur Ingénieur, Ecole Centrale de Paris.Google Scholar
  14. 14.
    Wolf J.P., Darbre G.R. (1984) Dynamic stiffness matrix of soil by the boundary -element method: conceptual aspects, Earthquake Engineering and Structural Dynamics, 12, pp 385–400.CrossRefGoogle Scholar
  15. 15.
    Wolf J.P., Darbre G.R. (1984) Dynamic stiffness matrix of soil by the boundary -element method embedded foundations, Earthquake Engineering and Structural Dynamics, 12, pp 401–416.CrossRefGoogle Scholar
  16. 16.
    Wolf J.P. (1985) Dynamic soil-structure interaction, Prentice Hall.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • D. Aubry
    • 1
  • J. M. Crépel
    • 2
  1. 1.Châtenay MalabryEcole Centrale de ParisFrance
  2. 2.Coyne et Bellier Consulting EngineersParisFrance

Personalised recommendations