Skip to main content

Boundary Element Method for Visco-Poroelasticity Applied to Soil Consolidation

  • Conference paper
  • 297 Accesses

Abstract

The boundary element method for Biot’s poroelasticity is extended to visco-poroelasticity via the correspondence principle. Initial/boundary value problems are solved in the Laplace transform domain and then numerically inverted. A consolidation model for the simultaneous primary and secondary consolidation is proposed. The physics is examined in a numerical example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biot, M. A., “General theory of three-dimensional consolidation”, J. A.pl. Phys., 12, pp. 155–164 (1941).

    ADS  MATH  Google Scholar 

  2. Biot, M. A., “Theory of elasticity and consolidation for a porous anisotropic solid”, J. A.pl. Phys., 26, pp. 182–185 (1955).

    MathSciNet  ADS  MATH  Google Scholar 

  3. Biot, M. A., “Theory of propagation of elastic waves in a fluid-saturated porous solid, part I: low frequency range”, J. A.oust. Soc. Am., 28, pp. 168–178 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  4. Biot, M. A., “General solutions of the equations of elasticity and consolidation for a porous material”, J. A.pl. Mech., Trans. ASME, 78, pp. 91–96 (1956).

    MathSciNet  Google Scholar 

  5. Biot, M. A., “Theory of deformation of a porous viscoelastic anisotropic solid”, J. A.pl. Phys., 27, pp. 459–467 (1956).

    MathSciNet  ADS  Google Scholar 

  6. Brutsaert, W. and Corapcioglu, M.Y., “Pumping of aquifer with viscoelastic properties”, J. Hyd. Div., ASCE, 102, pp. 1663–1675 (1976).

    Google Scholar 

  7. Carroll, M. and Katsube, N., “The role of Terzaghi effective stress in linearly elastic deformation”, J. Energy Res. Tech., 105, pp. 509–511 (1983).

    Article  Google Scholar 

  8. Cheng, A.H-D., “Effect of sediment on earthquake-induced reservoir hydrodynamic response”, J. Eng. Mech., ASCE, 112, pp. 654–665 (1986).

    Article  Google Scholar 

  9. Cheng, A. and Detournay, E., “A direct boundary element method for poroelasticity with geomechanics applications”, manuscript in preparation, to be submitted to Int. J. Numer. Anal. Meth. Geomech. (1987).

    Google Scholar 

  10. Cheng, A. H-D. and Liggett, J. A., “Boundary integral equation method for linear porous-elasticity with applications to soil consolidation”, Int. J. Numer. Meth. Engng., 20, pp. 255–278 (1984).

    Article  MATH  Google Scholar 

  11. Cheng, A. and Liggett, J.A., “Boundary integral equation method for linear porous-elasticity with applications to fracture propagation”, Int. J. Numer. Meth. Engng., 20, pp. 279–296 (1984).

    Article  MATH  Google Scholar 

  12. Cheng, A. H-D. and Liu, P. L-F., “Seepage force on a pipeline buried in a poroelastic seabed under wave loadings”, Applied Ocean Research, 8, pp. 22–32 (1986).

    Article  Google Scholar 

  13. Cheng, A. H-D. and Predeleanu, M., “Transient boundary element formulation for poroelasticity”, to appear in Appl. Math. Modelling (1987).

    Google Scholar 

  14. Cleary, M., “Fundamental solutions for a fluid-saturated porous solid”, Int. J. Solids Struct., 13, pp. 785–806 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  15. Corapcioglu, M.Y. and Brutsaert, W., “Viscoelastic aquifer model applied to subsidence due to pumping,” Water Resource Research, 13, pp. 597–604 (1977).

    Article  ADS  Google Scholar 

  16. Detournay, E. and Cheng, A.H-D., “Linear poroelasticity and rock mechanics applications”, submitted to Int. J. Rock Mech. 3i Mining Sciences (1987).

    Google Scholar 

  17. Predeleanu, M., “Reciprocal theorem in the consolidation theory of porous media”, Anal. Univ. Bucuresti, Seria Stiintele Natur, M.tematica, Mecanica, 17, pp. 75–79 (1968).

    MathSciNet  MATH  Google Scholar 

  18. Rice, J. and Cleary, M.P., “Some basic stress-diffusion solutions for fluid saturated elastic porous media with compressible constituents”, Rev. Geophys. Space Phys., 14, pp. 227–241 (1976).

    Article  ADS  Google Scholar 

  19. Schapery, R., “Approximate methods of transform inversion for viscoelastic stress analysis”, Proc. 4th U.S. Natl. Congress Appl. Mech., 2, pp. 1075–1085 (1962).

    MathSciNet  Google Scholar 

  20. Taylor, D.W. and Merchant, W., “A theory of clay consolidation accounting for secondary compression,” J. Math. Phys., 19, pp. 167–185 (1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, A.HD., Predeleanu, M. (1988). Boundary Element Method for Visco-Poroelasticity Applied to Soil Consolidation. In: Cruse, T.A. (eds) Advanced Boundary Element Methods. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-83003-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-83003-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-83005-1

  • Online ISBN: 978-3-642-83003-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics