Nonuniqueness of Triple-deck Solutions for Axisymmetric Supersonic Flow with Separation

  • Ph. Gittler
  • A. Kluwick
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The triple-deck equations (e.g.[1]) for axisymmetric supersonic laminar boundary layers,[2]
$$\frac{{\partial u}}{{\partial x}} + \frac{{\partial v}}{{\partial y}} = 0,u\frac{{\partial u}}{{\partial x}} + v\frac{{\partial v}}{{\partial y}} = - \frac{{dy}}{{dx}} + \frac{{{\partial ^2}u}}{{\partial {y^2}}}$$
$$u=v=0fory=F\left(x\right),u=yforx\to-\infty,u=y+ A\left(x\right)fory\to\infty$$
$$p\left( x \right) = - A'\left( x \right) + \frac{1}{a}\int\limits_{ - \infty }^x W \left( {\frac{{x - \xi }}{a}} \right)A'\left( \xi \right)d\xi ,W\left( z \right) = \int\limits_0^\infty {\frac{{\exp \left( { - \lambda z} \right)}}{{K_1^2\left( \lambda \right) + {\pi ^2}I_1^2\left( \lambda \right)}}} \frac{{d\lambda }}{\lambda },$$
$$F(x) = \left\{ {\begin{array}{*{20}{c}} 0 \\ a \\ {ax} \end{array}} \right.\left( {\frac{{{x^2}}}{{4\rho }} + \frac{x}{2} + \frac{\rho }{4}} \right)\begin{array}{*{20}{c}} {forx < - \rho } \\ {for - \rho \underline{\underline < } x\underline{\underline < } \rho } \\ {forx > \rho } \end{array}$$
describes a smoothed cylinder-cone configuration, have been solved for a=1., ρ=1. and moderately large values of the scaled flare angle α. Here a denotes the scaled radius of the cylinder.


Supersonic Flow Cone Angle Separation Point Pressure Plateau Planar Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, F.T.: On the High Reynoldsnumber Theory of Laminar Flows, IMA J. Appl. Math. 28 (1982), 207–281.ADSMATHGoogle Scholar
  2. 2.
    Gittler, Ph. and Kluwick, A.: Triple-Deck Solutions for Supersonic Flows past Flared Cylinders, J. Fluid Mech. (1987), in press.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1987

Authors and Affiliations

  • Ph. Gittler
    • 1
  • A. Kluwick
    • 1
  1. 1.Institut für Strömungslehre und WärmeübertragungTechnische UniversitätWienAustria

Personalised recommendations