Some Features of the Transcritical Boundary Layer Interaction and Separation

  • V. Ja. Neiland
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The asymptotic theory of the inviscid flow boundary layer interaction is an important part of the viscous gas dynamics at high Reynolds numbers. It is based on the fundamental idea of L. Prandtl about a possible division of the total flow into the inviscid flow and thin boundary layer [l]. This idea is due to the attempt to explain rationally the flow separation from a body surface. The idea of Prandtl appeared extremely fruitful not only for the viscous flow dynamics but also for many other problems of the applied mathematics. The initial theory formulation assumes the possibility to get at first the solution for the external inviscid gas flow and then for the boundary layer at a given pressure distribution. Later L. Prandtl[2]showed the possibility to refine the solution allowing for the effect of the boundary layer displacement on the external flow. In the next approximation it is necessary to take into account the impact of the external flow change on the boundary layer flow, etc. Actually, the concept of the weak interaction theory was formulated.


Boundary Layer Integral Curve Hypersonic Flow Integral Curf Inviscid Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prandtl L. Über Flüssigkeitsbewegung bei sehr kleiner Reibung. d. III. Intern.Math.Kongr., Heidelberg, 1904.Google Scholar
  2. 2.
    Prandtl L. Mekhanika vyaskikh zhidkostei/Red. Dürend V.F. Aerodinamika t.III, razdel Zh., Oborongiz, 1939, p. 47–237.Google Scholar
  3. 3.
    Landau L.D., Lifshitz E.M. Mekhanika sploshnykh sred. Gostekhizdat, Moskva, 1944.Google Scholar
  4. 4.
    Goldstein S. Quart.J.Mech.Appl.Math., 1948, N 1, p. 43–69.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Neiland V.Ja. Doklad na III Fcesoyuznom sjezde po teoreti-cheskoi i prikladnoi mekhanike. 25.01 t 1.02. 1968. Sb. an-notatsii dikladov sjezda, “Nauka”, Moskva, 1968.Google Scholar
  6. 6.
    Neiland V.Ja. Izv. AN SSSR, MZhG, 1969, N 4.Google Scholar
  7. 7.
    Stewartson K., Williams P. Proc. Roy. Soc. A, 1969, 312.Google Scholar
  8. 8.
    Sychev V.V. Izv. AN SSSR, MZhG, 1972, N 3.Google Scholar
  9. 9.
    Ryzhov A.S. DAN SSSR, t.234, N 4, 1977.Google Scholar
  10. 10.
    Schneider W. J.Fluid Mech., 1974, vo1.63, p.463.Google Scholar
  11. 11.
    Neiland V.Ja. Asymtoticheskaya teoriya otryva i vzaimo-deistviya pogranichnogo sloya so sverkhzvukovym potokom gaza. Uspekhi mekhaniki, t.4, vyp. 2, 1981, p. 3–62.Google Scholar
  12. 12.
    Crocco L. Proc. Conf. on High-Speed Aeron. Brooklin,1955.Google Scholar
  13. 13.
    Neiland V.Ja. Izv. AN SSSR, MZhG, 1973, N 6.Google Scholar
  14. 14.
    Brown S., Stewartson K. Ann. Rev. of Fluid Mech., 1961, N 1.Google Scholar
  15. 15.
    Neiland V.Ja. Uchyonye zapiski TsAGI, 1974, t.V, N 2, p. 70–79.Google Scholar
  16. 16.
    Heiss U.D., Probstein P.F. Teoriya giperzvukovykh teche-nii. M., Izd. inostr. lit. 1962.Google Scholar
  17. 17.
    Van Dyke M. Metody vozmushchenii v mekhanike zhidkosti. M., “Mir”, 1967.Google Scholar
  18. 18.
    Neiland V.Ja. Izv. AN SSSR, MZhG, 1970, N 4.Google Scholar
  19. 19.
    Neiland V.Ja. Izv. AN SSSR, MZhG, 1967, N 4.Google Scholar
  20. 20.
    Olsson G.R., Messiter A.F. AIAA J., 1969 vol.7, N 7.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1987

Authors and Affiliations

  • V. Ja. Neiland
    • 1
  1. 1.U.S.S.R. The Central Institute of Aero-And HydrodynamtcsZhukowsky-Town,3USSR

Personalised recommendations