Skip to main content

Manipulator Kinematic Model

  • Chapter
Introduction to Robotics

Abstract

Kinematic modelling of manipulators plays an important role in contemporary robot control. It describes the relationship between robot end-effector position and orientation in space and manipulator joint angles. It also describes the correlation between linear and angular velocities of the end-effector and joint velocities. Since kinematic modelling is an inevitable step in modern robot control, in this chapter we will consider the main principles of manipulator kinematic model generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vukobratovie, M., Kircanski, M., “Kinematics and Trajectory Synthesis of Manipulation Robots, Series”: Scientific Fundamentals of Robotics 3“, Springer-Verlag, 1985.

    Google Scholar 

  2. Denavit, J., Hartenberg, R.S., “Kinematic Notation for Lower-Pair Mechanisms Based on Matrices”, ASME J. of Applied Mechanics, June 1955, pp. 215–221.

    Google Scholar 

  3. Paul, R., Robot Manipulators: Mathematics, Programming, and Control, The MIT Press, 1981.

    Google Scholar 

  4. Lee, C.S.G., Ziegler, M., “A Geometric Approach in Solving the Inverse Kinematics of PUMA Robots”, Proc. 13th ISIR, Chicago, 1983.

    Google Scholar 

  5. Featherstone, R., “Position and Velocity Transformations Between Robot End-Effector Coordinates and Joint Angles”, The Int. J. of Robotics Research, Vol. 2, No. 2, Summer 1983.

    Google Scholar 

  6. Pieper, D.L., Roth, B., “The Kinematics of Manipulators Under Computer Control”, Proc. II Int. Congress on Theory of Machines and Mechanisms, Vol. 2., Zakopane, Poland, 1969.

    Google Scholar 

  7. Klien, Ch.A., Ching-Hsian Huang, “Review of Pseudo-Inverse Control for Use with Kinematically Redundant Manipulators”, IEEE Trans. on Syst., Man, and Cyber., Vol. SMC-13, No. 3, March/April 1983.

    Google Scholar 

  8. Wampler, C.W., “Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Square Methods”, IEEE Trans. on Syst., Man, and Cyber., Vol. SMC-16, No. 1, January/February 1986.

    Google Scholar 

  9. Goldenberg, A.A., Benhabib, B., Fenton, R., “A Complete Generalized Solution to the Inverse Kinematics of Robots”, IEEE J. of Robotics and Automation, Vol. RA-1, No. 1, March 1985.

    Google Scholar 

  10. Kircanski, M., Vukobratovie, M., “Computer-Aided Generation of Manipulator Kinematic Models in Symbolic Form”, Proc. of 15th ISIR, Tokyo, 1985.

    Google Scholar 

  11. Kircanski, M., Vukobratovié, M., “A New Program Package for Generating Symbolic Kinematic Models of Arbitrary Serial-Link Manipulators”, Proc. of 16th ISIR, Brussels, Belgium, 1986.

    Google Scholar 

  12. Lin, Ch.Sh., Chang, P.R., “Joint Trajectories of Mechanical Manipulators for Cartesian Path Approximation”, IEEE Trans. on Syst., Man, and Cyber., Vol. SMC-13, No. 6, Nov./Dec. 1983, pp. 1094–1102.

    Google Scholar 

  13. Chand, S., Doty, K., “On-Line Polynomial Trajectories for Robot Manipulators”, Int. J. of Robotics Research, Vol. 4, No. 2, Summer 1985, pp. 38–48.

    Google Scholar 

  14. Paul, R., Zhang Hong, “Robot Motion Trajectory Specification and Generation”, II Int. Symp. on Robotics Research, Kyoto, 1984, pp. 373–380.

    Google Scholar 

  15. Castain, R., Paul, R., “An On-Line Dynamic Trajectory Generator”, Int. J. of Robotics Research, Vol. 3, No. 1, Spring 1984, pp. 68–72.

    Google Scholar 

  16. Vereschagin, A.F., Generozov, V.L., “Planning of Manipulator Trajectories” (in Russian), Teknicheskaya Kibemetika AN USSR, No. 2, 1978.

    Google Scholar 

  17. Behforooz, H., Papamichael, N, Worsey, A.J., “A Class of Piecewise-Cubic Interpolatory Polynomials”, J. Inst. Math. Appl., Vol. 25, 1980, pp. 53–65.

    Article  MATH  MathSciNet  Google Scholar 

  18. Lin, Ch.Sh., Chang, P.R., “Formulation and Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots”, IEEE Trans. on Automatic Control, Vol. AC-28, No. 12, December 1983, pp. 1066–1074.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirćanski, M. (1989). Manipulator Kinematic Model. In: Introduction to Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82997-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82997-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82999-4

  • Online ISBN: 978-3-642-82997-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics