Skip to main content

Separation and Purification of Abscisic Acid and Its Catabolites by High Performance Liquid Chromatography

  • Chapter
High Performance Liquid Chromatography in Plant Sciences

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 5))

  • 342 Accesses

Abstract

Numerous theories on the role of ABA as a plant growth regulator have been proposed, including, but not limited to, root gravitropism (Wilkins 1978, 1984; but see Moore and Evans 1986), embryo and bud dormancy (Addicott and Lyon 1969; Walton 1980; Wareing 1978), and stomatal closure (Raschke 1975). However, Wareing (1978) and Walton (1980) have concluded that too little is known about the events occurring during any physiological process to state unequivocally that ABA is involved in its control. The best evidence, although still correlative, for the involvement of ABA in a physiological process has been obtained with experiments on water stress. Detached or attached leaves will accumulate ABA (usually 10 to 40 times that found in a turgid leaf) upon the imposition of water stress. When ABA is given to epidermal strips or fed to intact leaves through the transpiration stream, stomata close rapidly (Raschke 1975; Davies and Mansfield 1983). The effect of ABA on stomata is rather rapid compared to its effect on protein synthesis, as in the control of α-amylase production in barley aleurone layers. In this tissue ABA inhibits the gibberellin-induced synthesis of α-amylase, which is needed for the hydrolysis of endosperm starch during germination (Ho 1983, Jacobsen 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ABA-GE:

β-D-glucopyranosyl abscisate

ABA-GS:

1’-O-abscisic acid-β-D-glucopyranoside

DPA:

dihydrophaseic acid

DPA-GS:

4’-O-dihydrophaseic acid-β-D-glucopyranoside

EI:

electron impact

EIA:

enzyme immunoassay

GLC-ECD:

gas liquid chromatography-electron capture detection

GC-MS:

gas chromatography-mass spectroscopy

8’-OH-ABA:

8’-hydroxy ABA

HMG-ABA:

β-hydroxy-β-methylglutarylhydroxy abscisic acid

HPLC:

high performance liquid chromatography

min:

minute(s)

Me-ABA:

methyl ester of abscisic acid

NCI:

negative chemical ionization

ORD:

optical rotary dispersion

PA:

phaseic acid

PA-GE:

β-D-glucopyranosyl phaseate

RIA:

radioimmunoassay

SIM:

selected ion monitoring

TLC:

thin layer chromatography

UV:

ultraviolet

References

  • Addicott FT, Lyon JL (1969) Physiology of abscisic acid and related substances. Annu Rev Plant Physiol 20: 139: 164

    Google Scholar 

  • Addicott FT, Lyon JL, Ohkuma K, Thiessen WE, Cams HR, Smith 0E, Cornforth JW, Milborrow BV, Ryback G, Wareing PF (1968) Abscisic acid: a new name for abscisin II (dormin). Science 159: 1493

    PubMed  CAS  Google Scholar 

  • Assante GL, Merlini G, Nasini G (1977) (+)-Abscisic acid, a metabolite of the fungus Cercospora rosicola. Experientia 33:1556

    Google Scholar 

  • Boyer GL, Zeevaart JAD (1982 a) Metabolism of abscisic acid in Xanthium strumarium. Plant Physiol Suppl 69:77

    Google Scholar 

  • Boyer GL, Zeevaart JAD (1982 b) Isolation and quantitation of ß-D-glucopyranosyl abscisate from leaves of Xanthium and spinach. Plant Physiol 70:227–231

    Google Scholar 

  • Boyer GL, Zeevaart JAD (1986) 7’-Hydroxy (-)-R-abscisic acid: a metabolite of feeding (-)-R-abscisic acid to Xanthium strumarium. Phytochemistry 25:1103–1105

    Google Scholar 

  • Boyer GL, Milborrow BV, Wareing PF, Zeevaart JAD (1986) The nomenclature of abscisic acid and its metabolites. In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin Heidelberg New York Tokyo, pp 99–100

    Chapter  Google Scholar 

  • Brenner ML, Burr B, Burr F (1977) Correlation of genetic vivipary in corn with abscisic acid concentration. Plant Physiol Suppl 63: 36

    Google Scholar 

  • Brenner ML (1981) Modern methods for plant growth substance analysis. Annu Rev Plant Physiol 32: 511–538

    Article  CAS  Google Scholar 

  • Cornforth JW, Mallaby R, Ryback G (1968) Synthesis of (+)-[2-’4C]abscisic acid. J Chem Soc (C) 1565–1568

    Google Scholar 

  • Cornish K, Zeevaart JAD (1984) Abscisic acid metabolism in relation to water stress and leaf age in Xanthium strumarium. Plant Physiol 76: 1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Crouch ML, Sussex IM (1981) Development and storage protein synthesis in Brassica na-pus L. in vivo and in vitro. Planta 153: 64–74

    Google Scholar 

  • Crouch ML, Tenbarge K, Simon A, Finkelstein R, Scofield S, Solberg L (1985) Storage protein mRNA levels can be regulated by abscisic acid in Brassica embryos. In: van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome. Plenum Press, New York, pp 555–566

    Google Scholar 

  • Daie J, Wyse R, Hein M, Brenner ML (1984) Abscisic acid metabolism by source and sink tissues of sugar beet. Plant Physiol 74: 810–814

    Article  PubMed  CAS  Google Scholar 

  • Dathe W, Sembdner G (1982) Isolation of 4’-dihydroabscisic acid from immature seeds of Vicia faba. Phytochemistry 21: 1798–1799

    CAS  Google Scholar 

  • Davies WJ, Mansfield TA (1983) The role of abscisic acid in drought avoidance. In: Addicott FT (ed) Abscisic acid. Praeger Press, New York, pp 237–268

    Google Scholar 

  • Dörffling K, Tietz D (1983) Methods for the detection and estimation of abscisic acid and related compounds. In: Addicott FT (ed) Abscisic acid. Praeger Press, New York, pp 23–78

    Google Scholar 

  • Dure L, Galu G, Chlan C, Pyle J (1983) Developmentally regulated gene sets in cotton embryogenesis. In: Goldberg R (ed) Plant molecular biology. Liss, New York, pp 331–342

    Google Scholar 

  • Gaskin P, MacMillan J (1968) Identification and estimation of abscisic acid in a crude plant extract by combined gas-chromatography-mass spectrometry. Phytochemistry 7: 1699–1701

    Article  CAS  Google Scholar 

  • Gillard DF, Walton DC (1976) Abscisic acid metabolism by a cell-free preparation from Echinocystis lobata endosperm. Plant Physiol 58: 790–795

    Article  PubMed  CAS  Google Scholar 

  • Harrison MA, Walton DC (1975) Abscisic acid metabolism in water stressed bean leaves. Plant Physiol 56: 250–254

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa S, Poling SM, Maier VP, Bennett RD (1984) Metabolism of abscisic acid: bacterial conversion to dehydrovomifoliol and vomifoliol dehydrogenase activity. Phytochemistry 25: 2769–2771

    Article  Google Scholar 

  • Hirai N, Fukui H, Koshimizu K (1978) A novel abscisic acid metabolite from seeds of Robinia pseudoacacia. Phytochemistry 17: 1625–1627

    CAS  Google Scholar 

  • Hirai N, Koshimizu K (1983) A new conjugate of dihydrophaseic acid from avocado fruit. Agric Biol Chem 47: 365–371

    Article  CAS  Google Scholar 

  • Ho T-HD (1983) Biochemical mode of action of abscisic acid. In: Addicott FT (ed) Abscisic acid. Praeger Press, New York, pp 147–169

    Google Scholar 

  • Ihle JN, Dure L (1970) Hormonal regulation of translation requiring RNA synthesis. Biochem Biophys Res Comm 38: 995–1001

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JV (1983) Regulation of protein synthesis in aleurone cells by gibberellin and abscisic acid. In: Crozier A (ed) The biochemistry and physiology of gibberellins, vol 2. Praeger Press, New York, pp 159–188

    Google Scholar 

  • Karssen CM, Laçka E (1986) A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid deficient mutants of Arabidopsis thaliana. In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin Heidelberg New York, pp 315–323

    Chapter  Google Scholar 

  • Knox JP, Galfre G (1986) Use of monoclonals to separate the enantiomers of abscisic acid. Anal Biochem 155: 92–94

    Article  PubMed  CAS  Google Scholar 

  • Lehmann H, Miersch O, Schütte HR (1975) Synthese von Abscisyl-ß-D-glucopyranosid. Z Chem 15: 443

    Article  CAS  Google Scholar 

  • Lehmann H, Preiss A, Schmidt J (1983) A novel abscisic acid metabolite from cell suspension cultures of Nigella damascena. Phytochemistry 22: 1277–1278

    Article  CAS  Google Scholar 

  • Lehmann H, Repke H, Gross D, Schütte HR (1973) Darstellung von Abscisinsäure-2–14C. Z Chem 13: 255–256

    Article  CAS  Google Scholar 

  • Loveys BR, Downton JS (1979) Abscisic acid in crushed grape berries during fermentation and in wine during storage. Am J Enol Viticult 30: 232–235

    CAS  Google Scholar 

  • Loveys BR, Milborrow BV (1984) Metabolism of abscisic acid. In: Crozier A, Hillman JR (eds) The biosynthesis and metabolism of plant hormones. Cambridge University Press, London, pp 71–104

    Google Scholar 

  • Milborrow BV (1967) The identification of (+)-abscisin II [(+)-dormin] in plants and measurement of its concentration. Planta 76: 93–113

    Article  CAS  Google Scholar 

  • Milborrow BV (1969) Identification of “metabolite C” from abscisic acid and a new structure for phaseic acid. Chem Commun 966–967

    Google Scholar 

  • Milborrow BV (1983) The reduction of (+)-[2–14C] abscisic acid to the 1’,4’-trans-diol by pea seedlings and the formation of 4’-desoxy ABA as an artifact. J Exp Bot 34:303–308

    Google Scholar 

  • Milborrow BV, Mallaby R (1975) The occurrence of methyl (+)-abscisate as an artifact of extraction. J Exp Bot 26: 741–748

    Article  CAS  Google Scholar 

  • Milborrow BV, Vaughan GT (1982) Characterization of dihydrophaseic 4’-O-ß-D-glu-copyranoside as a major metabolite of abscisic acid. Aust J Plant Physiol 9: 361–372

    Article  CAS  Google Scholar 

  • Moore R, Evans ML (1986) How roots perceive and respond to gravity. Am J Bot 73: 574–587

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Smith JD (1985) Graviresponsiveness and abscisic acid content of roots of carotenoid-deficient mutants of Zea mays L. Planta 164: 126–128

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Horgan R, Heald JK (1983) Determination of the levels of abscisic acid-glucose ester in plants. Planta 157: 371–375

    Article  CAS  Google Scholar 

  • Raikhel NV, Palevitz BA, Haigler CH (1986) Abscisic acid control of lectin accumulation in wheat seedlings and callus cultures. Plant Physiol 80: 167–171

    Article  PubMed  CAS  Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26: 309–340

    Article  CAS  Google Scholar 

  • Roberts DL, Heckman RA, Hege BP, Bellin SA (1968) Synthesis of ( RS)-abscisic acid. J Org Chem 33: 3566–3569

    Google Scholar 

  • Setter TL, Brun WA, Brenner ML (1981) Abscisic acid translocation and metabolism in soybeans following depodding and petiole girdling treatments. Plant Physiol 67:774–779

    Google Scholar 

  • Smith JD, McDaniel S, Lively S (1978) Regulation of embryo growth by abscisic acid in vitro. Maize Genet Coop News Lett 52: 107–108

    Google Scholar 

  • Sondheimer E, Galson EC, Tinelli E, Walton D (1974) The metabolism of hormones during dormancy. IV. The metabolism of (S)-2–14C abscisic acid in ash seed. Plant Physiol 54: 803–808

    Article  PubMed  CAS  Google Scholar 

  • Sussex I (1975) Growth and metabolism of the embryo and attached seedling of the viviparous mangrove Rhizophora mangle. Am J Bot 62: 948–953

    Article  CAS  Google Scholar 

  • Takahashi S, Oritani T, Yamashita K (1986) Total synthesis of (±)-methyl phaseates. Agric Biol Chem 50: 1589–1596

    Article  CAS  Google Scholar 

  • Vaughan GT (1986) Studies on the metabolism of abscisic acid. Thesis, University of New South Wales, Kensington

    Google Scholar 

  • Vaughan GT, Milborrow BV (1984) The resolution by HPLC of RS-[2–14C]Me 1’,4’-cisdiol of abscisic acid and the metabolism of (—)-R- and (+)-S-abscisic acid. J Exp Bot 150: 110–120

    Article  Google Scholar 

  • Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489

    Article  CAS  Google Scholar 

  • Walton D, Wellner R, Horgan R (1977) Synthesis of tritiated abscisic acid of high specific activity. Phytochemistry 16: 1059–1061

    Article  CAS  Google Scholar 

  • Wang TL, Griggs P, Cook S (1986) Immunoassays for plant growth regulators — A help or hindrance? In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin Heidelberg New York, pp 26–34

    Chapter  Google Scholar 

  • Wareing PF (1978) Abscisic acid as a natural growth regulator. Phil Trans Roy Soc Lond B 284: 483–498

    Article  CAS  Google Scholar 

  • Wilkins MB (1978) Gravity sensing guidance mechanisms in roots and shoots. Bot Mag Spec Issue 1: 255–277

    CAS  Google Scholar 

  • Wilkins MB (1984) Gravitropism. In: Wilkins MB (ed) Advanced plant physiology. Pitman, London, pp 163–185

    Google Scholar 

  • Williamson JD, Quatrano RS, Cuming AC (1985) En, polypeptide and its messenger RNA levels are modulated by abscisic acid during embryogenesis in wheat. Eur J Biochem 152: 501–507

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD (1977) Sites of abscisic acid synthesis and metabolism in Ricinus communis L. Plant Physiol 57: 788–791

    Article  Google Scholar 

  • Zeevaart JAD (1979) Chemistry and biological aspects of abscisic acid. In: Mandava NB (ed) Plant growth substances. ACS symposium series, no 111. Washington, DC, American Chemical Society, pp 99–114

    Google Scholar 

  • Zeevaart JAD, Milborrow BV (1976) Metabolism of abscisic acid and the occurrence of epi-dihydrophaseic acid in Phaseolus vulgaris. Phytochemistry 15: 493–500

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Creelman, R.A., Zeevaart, J.A.D. (1987). Separation and Purification of Abscisic Acid and Its Catabolites by High Performance Liquid Chromatography. In: Linskens, HF., Jackson, J.F. (eds) High Performance Liquid Chromatography in Plant Sciences. Modern Methods of Plant Analysis, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82951-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82951-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82953-6

  • Online ISBN: 978-3-642-82951-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics