The Dynamical Theory of Diffraction

  • Lyle H. Schwartz
  • Jerome B. Cohen
Part of the Materials Research and Engineering book series (MATERIALS)


If an incident beam is scattered from atoms at some depth in a crystal, it is not at all clear why we have been assuming that the scattered beam can leave the crystal without rescattering. Consider a small crystal in the shape of a cube, 10−3 m on an edge, entirely bathed by an x-ray beam. The peak intensity from such a crystal can be written as follows, for unpolarized radiation and receiving slits of dimensions w × h (see Sect. 4.9).


Incident Beam Energy Flow Dynamical Theory Bragg Reflection Diffract Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amelinckx, S., Gevers, R., Remaut, G., and Van Landuyt, J. (eds.), “Modern Diffraction and Imaging Techniques in Materials Science.” North-Holland, Amsterdam, 1970Google Scholar
  2. Anderson, S.K., Golovechenko, J.A., and Mair, G., Phys. Rev. Letters 37, 1141 (1976)CrossRefGoogle Scholar
  3. Authier, A., “Advances in Structure Research by Diffraction Methods” (R. Brill and R. Mason, eds.), Vol. 3. Pergamon, New York, 1970Google Scholar
  4. Azaroff, L.V., Kaplow, R., Kato, N., Weiss, R.J., Wilson, A.J.C., and Young, R.A., “X-Ray Diffraction.” McGraw-Hill, New York, 1974Google Scholar
  5. Batterman, B.W., Phys. Rev. 126, 1461 (1962)CrossRefGoogle Scholar
  6. Batterman, B.W., Phys. Rev. 133, A759 (1964)CrossRefGoogle Scholar
  7. Boettinger, W.J., Burdette, H.E. and Kuriyama, M, Rev. Scientific Instr. 50, 26 (1979)CrossRefGoogle Scholar
  8. Bonse, U., and Hart, M., Appl. Phys. Lett. 7, 238 (1965a)CrossRefGoogle Scholar
  9. Bonse, U., and Hart, M., Z. Phys. 188, 154 (1965b)CrossRefGoogle Scholar
  10. Bonse, U., and Hart, M., Z. Phys. 189, 269 (1966a)CrossRefGoogle Scholar
  11. Bonse, U., and Hart, M., Z. Phys. 189, 151 (1966b)CrossRefGoogle Scholar
  12. Bonse, U., and Hart, M., Z. Phys. 190, 455 (1966c)CrossRefGoogle Scholar
  13. Borrmann, G., Z. Phys. 42, 157 (1941)Google Scholar
  14. Borrmann, G., Naturwissenschaften 38, 330 (1951)CrossRefGoogle Scholar
  15. Borrmann, G., Hildebrant, G., and Wagner, H., Z. Phys. 142, 406 (1955)CrossRefGoogle Scholar
  16. Brady, G.W., J. Chem. Phys. 57, 91(1972)CrossRefGoogle Scholar
  17. Cole, H., Chambers, F. W., and Wood, C., J. Appl. Phys. 32, 1942 (1961)CrossRefGoogle Scholar
  18. Cowan, P.L., Golovchenko, J.A., and Robbins, M.F., Phys. Rev. Letters 44, 1680 (1980)CrossRefGoogle Scholar
  19. Cowley, J.M., “Diffraction Physics.” North Holland, Amsterdam, 1975 (American Elsevier, New York)Google Scholar
  20. Darwin, C.G., Philos. Mag. 27, 315, 675 (1914)Google Scholar
  21. Duncumb, P., Philos. Mag. 7, 2101 (1962)CrossRefGoogle Scholar
  22. Ewald, P.P., Ann. Phys. 49, 1, 117 (1916); 54, 519 (1917)CrossRefGoogle Scholar
  23. Ewald, P.P., Acta Crystallogr. 11, 888 (1958)CrossRefGoogle Scholar
  24. Giardina, M.D., and Merlini, A., Z. Naturforsch. 28a, 1360 (1973)Google Scholar
  25. Hart, M., J. Appl. Crystallogr. 8, 436 (1975)CrossRefGoogle Scholar
  26. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J., “Electron Microscopy of Thin Crystals”, Butterworth, London, 1965Google Scholar
  27. Hordon, M.J., and Averbach, B.L., Acta Metall. 9, 237 (1961)CrossRefGoogle Scholar
  28. Hountas, A., Filippakis, S.E., Papathanassopoulos, C., and Tsakalakos, Th., J. Phys. C. 6, 1693 (1973)CrossRefGoogle Scholar
  29. James, R.W., “The Optical Principle of the Diffraction of X-Rays,” p. 304, Bell, London, 1950Google Scholar
  30. James, R.W., Solid State Phys. 15, 55 (1963)Google Scholar
  31. Kato, N., Acta Crystallogr. 11, 885 (1958)CrossRefGoogle Scholar
  32. Kato, N., Acta Crystallogr. 13, 349 (1960)CrossRefGoogle Scholar
  33. Knowles, J.W., Acta Crystallogr. 9, 61 (1956)CrossRefGoogle Scholar
  34. Miller, F., Phys. Rev. 47, 209 (1935)CrossRefGoogle Scholar
  35. Newkirk, J.B., and Wernick, J.H. (eds.), “Direct Observation of Imperfection in Crystals.” Interscience, New York, 1962Google Scholar
  36. Okkerse, B., Philips Res. Reports 126, 464 (1962)Google Scholar
  37. Okkerse, B., and Penning, P., Philips Res. Reports 18, 82 (1965)Google Scholar
  38. Overhauser, A.W., and Collela, R., Amer. Scientist 68, 70 (1980)Google Scholar
  39. Patel, J.R., and Batteiman, B.W., J. Appl. Phys. 34, 2716 (1963)CrossRefGoogle Scholar
  40. Penning, P., and Polder, D, Philips Res. Reports 16, 419 (1961)Google Scholar
  41. Tanner, B.K., “X-ray Diffraction Topography”, Pergamon Press, New York, (1976)Google Scholar
  42. Tanner, B.K. and Bowen D.K., eds. “Characterization of Crystal Growth Defects by X-ray Methods”, Plenum Press, New York, (1980)Google Scholar
  43. Tuomi, T., Naukkarinen, K., and Rabe, P., Phys. Status Solidi, A 25, 93 (1974)CrossRefGoogle Scholar
  44. Turner, A.P., Vreeland, R., Jr., and Pope, D.P., Acta Crystallogr. A 24, 452 (1968).CrossRefGoogle Scholar
  45. Wagenfield, H., J. Appl. Phys. 33, 2907 (1962)CrossRefGoogle Scholar
  46. Warren, B.E., Acta Crystallogr. 12, 837 (1959)CrossRefGoogle Scholar
  47. Warren, B.E., J. Appl. Phys. 7, 1111 (1959)CrossRefGoogle Scholar
  48. Warren, B.E., “X-Ray Diffraction.” Addison-Wesley, Reading, Massachusetts, 1969Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Lyle H. Schwartz
    • 1
  • Jerome B. Cohen
    • 2
  1. 1.Institute for Materials Science and EngineeringU.S. Dept. of Commerce, National Bureau of StandardsGaithersburgUSA
  2. 2.Dept. of Materials Science and EngineeringThe Technological Institute, Northwestern UniversityEvanstonUSA

Personalised recommendations