Ultrasonic Velocity and Modified Critical Behaviour in the Random-Field Ising System DyAsxV1-xO4

  • J. H. Page
  • M. C. Maliepaard
  • D. R. Taylor
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 68)


Recently there has been considerable interest in the effects of random fields on Ising phase transitions [1–14]. In their pioneering paper, IMRY and MA [1] were the first to suggest that random fields destroy long-range order in Ising systems when the dimensionality d is less than d = 2 and that the phase transition which occurs for d > d is characterized by drastically different critical behaviour. Subsequent analyses of the random-field Ising model (RFIM) have resulted in many debates on both of these issues [2]. While it is now generally agreed that the lower critical dimenionality d is indeed equal to 2 [3], there is still controversy concerning the correct description of the critical properties. It has been suggested [4–6] that the modified critical behaviour of random-field systems can be explained in terms of a reduction in the effective dimensionality, whereby the random-field exponents in d dimensions are equal to those for zero random field in d̄ = d — δ dimensions. Evidence for a dimensionality shift δ of 1 has come from numerical simulations [7] of the RFIM and from experiments [8] on randomly-diluted antiferromagnets in a uniform field, a system believed to be equivalent to a pure ferromagnet in a random field [9].


Zircon Attenuation Acoustics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Imry and S.-k. Ma: Phys. Rev. Lett. 35, 1399 (1975)CrossRefADSGoogle Scholar
  2. 2.
    For a short review, see A. Aharony: J. Magn. Magn. Mat. 54–57, 27 (1986)CrossRefGoogle Scholar
  3. 3.
    J.Z. Imbrie: Phys. Rev. Lett. 53, 1747 (1984)CrossRefADSGoogle Scholar
  4. 4.
    A. Aharony, Y. Imry and S.-k. Ma: Phys. Rev. Lett. 37, 1364 (1976)CrossRefADSGoogle Scholar
  5. 5.
    M. Schwartz: J. Phys. C 18, 135 (1985)CrossRefADSGoogle Scholar
  6. 6.
    Y. Shapir: Phys. Rev. Lett. 54, 154 (1985)CrossRefADSGoogle Scholar
  7. 7.
    A.P. Young and M. Nauenberg: Phys. Rev. Lett. 54, 2429 (1985)CrossRefADSGoogle Scholar
  8. 8.
    D.P. Belanger, A.R. King and V. Jaccarino: Phys. Rev. B 31, 4538 (1985)CrossRefADSGoogle Scholar
  9. 9.
    S. Fishman and A. Aharony: J. Phys. C 12, L729 (1979).CrossRefADSGoogle Scholar
  10. 10.
    M. Schwartz and A. Soffer: Phys. Rev. Lett. 55, 2499 (1985)CrossRefADSGoogle Scholar
  11. 11.
    A.T. Ogielski and D.A. Huse: Phys. Rev. Lett. 56, 1298 (1986)CrossRefADSGoogle Scholar
  12. 12.
    A.J. Bray and M.A. Moore: J. Phys. C 18, L927 (1985)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J. Villain: J. Physique 46, 1843 (1985)CrossRefGoogle Scholar
  14. 14.
    D.S. Fisher: Phys. Rev. Lett. 56, 416 (1986)CrossRefADSGoogle Scholar
  15. 15.
    D.R. Taylor, E. Zwartz, J.H. Page and B.E. Watts: J. Magn. Magn. Mat. 54–57, 57 (1986)CrossRefGoogle Scholar
  16. 16.
    J.H. Page, D.R. Taylor and S.R.P. Smith: J. Phys. C 17, 51 (1984) and references thereinCrossRefADSGoogle Scholar
  17. 17.
    J.H. Page and H.M. Rosenberg: J. Phys. C 10, 1817 (1977)CrossRefADSGoogle Scholar
  18. 18.
    R.L. Melcher: In Physical Acoustics Vol. 12, ed. by W.P. Mason and R.N. Thurston (Academic, New York 1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. H. Page
    • 1
    • 3
  • M. C. Maliepaard
    • 2
    • 3
  • D. R. Taylor
    • 3
  1. 1.Physics DepartmentUniversity of ManitobaWinnipegCanada
  2. 2.Cavendish LaboratoryCambridgeUK
  3. 3.Physics DepartmentQueen’s UniversityKingstonCanada

Personalised recommendations