Ultrasonic Velocity and Modified Critical Behaviour in the Random-Field Ising System DyAsxV1-xO4

  • J. H. Page
  • M. C. Maliepaard
  • D. R. Taylor
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 68)


Recently there has been considerable interest in the effects of random fields on Ising phase transitions [1–14]. In their pioneering paper, IMRY and MA [1] were the first to suggest that random fields destroy long-range order in Ising systems when the dimensionality d is less than d = 2 and that the phase transition which occurs for d > d is characterized by drastically different critical behaviour. Subsequent analyses of the random-field Ising model (RFIM) have resulted in many debates on both of these issues [2]. While it is now generally agreed that the lower critical dimenionality d is indeed equal to 2 [3], there is still controversy concerning the correct description of the critical properties. It has been suggested [4–6] that the modified critical behaviour of random-field systems can be explained in terms of a reduction in the effective dimensionality, whereby the random-field exponents in d dimensions are equal to those for zero random field in d̄ = d — δ dimensions. Evidence for a dimensionality shift δ of 1 has come from numerical simulations [7] of the RFIM and from experiments [8] on randomly-diluted antiferromagnets in a uniform field, a system believed to be equivalent to a pure ferromagnet in a random field [9].


Phase Transition Random Field Critical Behaviour Ultrasonic Velocity Ising System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Imry and S.-k. Ma: Phys. Rev. Lett. 35, 1399 (1975)CrossRefADSGoogle Scholar
  2. 2.
    For a short review, see A. Aharony: J. Magn. Magn. Mat. 54–57, 27 (1986)CrossRefGoogle Scholar
  3. 3.
    J.Z. Imbrie: Phys. Rev. Lett. 53, 1747 (1984)CrossRefADSGoogle Scholar
  4. 4.
    A. Aharony, Y. Imry and S.-k. Ma: Phys. Rev. Lett. 37, 1364 (1976)CrossRefADSGoogle Scholar
  5. 5.
    M. Schwartz: J. Phys. C 18, 135 (1985)CrossRefADSGoogle Scholar
  6. 6.
    Y. Shapir: Phys. Rev. Lett. 54, 154 (1985)CrossRefADSGoogle Scholar
  7. 7.
    A.P. Young and M. Nauenberg: Phys. Rev. Lett. 54, 2429 (1985)CrossRefADSGoogle Scholar
  8. 8.
    D.P. Belanger, A.R. King and V. Jaccarino: Phys. Rev. B 31, 4538 (1985)CrossRefADSGoogle Scholar
  9. 9.
    S. Fishman and A. Aharony: J. Phys. C 12, L729 (1979).CrossRefADSGoogle Scholar
  10. 10.
    M. Schwartz and A. Soffer: Phys. Rev. Lett. 55, 2499 (1985)CrossRefADSGoogle Scholar
  11. 11.
    A.T. Ogielski and D.A. Huse: Phys. Rev. Lett. 56, 1298 (1986)CrossRefADSGoogle Scholar
  12. 12.
    A.J. Bray and M.A. Moore: J. Phys. C 18, L927 (1985)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J. Villain: J. Physique 46, 1843 (1985)CrossRefGoogle Scholar
  14. 14.
    D.S. Fisher: Phys. Rev. Lett. 56, 416 (1986)CrossRefADSGoogle Scholar
  15. 15.
    D.R. Taylor, E. Zwartz, J.H. Page and B.E. Watts: J. Magn. Magn. Mat. 54–57, 57 (1986)CrossRefGoogle Scholar
  16. 16.
    J.H. Page, D.R. Taylor and S.R.P. Smith: J. Phys. C 17, 51 (1984) and references thereinCrossRefADSGoogle Scholar
  17. 17.
    J.H. Page and H.M. Rosenberg: J. Phys. C 10, 1817 (1977)CrossRefADSGoogle Scholar
  18. 18.
    R.L. Melcher: In Physical Acoustics Vol. 12, ed. by W.P. Mason and R.N. Thurston (Academic, New York 1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. H. Page
    • 1
    • 3
  • M. C. Maliepaard
    • 2
    • 3
  • D. R. Taylor
    • 3
  1. 1.Physics DepartmentUniversity of ManitobaWinnipegCanada
  2. 2.Cavendish LaboratoryCambridgeUK
  3. 3.Physics DepartmentQueen’s UniversityKingstonCanada

Personalised recommendations