Ultrasonic Detection of an Energy Gap Change in the N/S Transition for Trapped H in Nb

  • K. R. Maschhoff
  • E. Drescher-Krasicka
  • A. V. Granato
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 68)


For a number of years the properties of low- lying excitations seen in many, amorphous materials have been interpreted in terms of a two-level tunneling model[1]. A large number of measurements of specific heat, neutron scattering, and ultrasonic attenuation and velocity have shown that hydrogen trapped at O or N impurities acts as a tunneling system and can be described with a two-level formalism with the imparities providing an internal strain bias. Recently, measurements in both the normal(N) and superconducting(S) states of ultrasonic attenuation in Nb-N-H[2], ultrasonic attenuation and velocity in Nb-O-H[3], and of neutron scattering[4] near 1.5 K and 9 K in Nb-O-H have shown that these systems interact strongly with the conduction electrons of the host material. YU and GRANATO[5] have proposed that the interaction of the conduction electrons with a two-level tunneling system reduces the splitting of the levels in the normal state. The purpose of these ultrasonic velocity measurements was to investigate this predicted effect of the environment on this model tunneling system.


Neutron Scattering Ultrasonic Attenuation Tunneling System Modulus Change Ultrasonic Velocity Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Anderson, B.I. Halperin, and C. M. Varma: Philos. Mag. 25, 1 (1972).CrossRefMATHADSGoogle Scholar
  2. 2.
    J.L. Wang, G. Weiss, H. Wipf, and A. Magerl: in Phonon Scattering in Condensed Matter, eds. W. Eisenmenger, K. Lassmann, and S. Dottinger,Springer-Verlag, Berlin, 1984.Google Scholar
  3. 3.
    E. Drescher-Krasicka and A.V. Granato: J. de Physique Coll. C10,73 (1985).Google Scholar
  4. 4.
    A. Magerl, A.J. Dianoux, H. Wipf, K. Neumaier, and I.S. Anderson: Phys. Rev. Lett. 56, 159 (1986).CrossRefADSGoogle Scholar
  5. 5.
    C.C. Yu and A.V. Granato: Phys. Rev. B32, 4793 (1895).Google Scholar
  6. 6.
    A.V. Granato, K.L. Hultman, and K. F. Huang: J. de Physique Coll. C10, 23 (1985).Google Scholar
  7. 7.
    D.B. Poker, G.G. Setser, A.V. Granato, and H.K. Birnbaum: Phys. Rev. B29, 622 (1984).ADSGoogle Scholar
  8. 8.
    T.S. Schober and T. Wentzl: in Topics in Applied Physics, Vol. 29, Hydrogen in Metals II, eds. G. Alefeld and J. Volki, Springer-Verlag, Berlin-Heidelburg-New York, 1978.Google Scholar
  9. 9.
    E.R. Fuller Jr., A.V. Granato, J. Holder, and E.R. Naimon, in Methods of Experimental Physics, Vol. 11, ed. R.V. Coleman, Academic Press, New York and London, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • K. R. Maschhoff
    • 2
  • E. Drescher-Krasicka
    • 2
  • A. V. Granato
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of IllinoisUrbanaUSA
  2. 2.Metallurgy Div.National Bureau of StandardsGaithersburgUSA

Personalised recommendations