How Genes Direct the Synthesis of Specific Proteins in Living Cells

  • Jean Brachet
  • Henri Alexandre
Part of the Heidelberg Science Library book series (HSL)

Abstract

The control of specific protein synthesis is at the core of molecular biology; this problem can be studied in vitro in cell extracts containing enzymes which catalyze specific steps of this complex process. However, since we are dealing in this book with eggs and sperms, mention should first by made of cell organization; we shall then discuss specific protein synthesis in living cells. It should be emphasized at once that there is no such thing as a “typical” cell: as we shall see, both eggs and spermatozoa are highly specialized cells. During development, cells, which looked similar, undergo cell differentiation, a necessary step in the diversification of our tissues and organs (brain, muscles, skeleton, etc.). However, since all cells are built on the same morphological pattern, the simplified scheme shown in Fig. 2 can be used for didactic purposes.

Keywords

Codon Lysine Compaction Methionine Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603PubMedCrossRefGoogle Scholar
  2. Klug A (1972) Assembly of tobacco mosaic virus. Federation Proceedings 31: 30–42PubMedGoogle Scholar
  3. Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607PubMedCrossRefGoogle Scholar
  4. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular biology of the cell. Garland, New YorkGoogle Scholar
  5. Brachet J (1941) La localisation des acides pentosenucléiques dans les tissus animaux et les oeufs d’amphibiens en voie de développement. Arch Biol 53: 207–257Google Scholar
  6. Brachet J (1985) Molecular cytology (2 vol) Academic Press, New YorkGoogle Scholar
  7. Caspersson T (1941) Studien über den Eiweißumsatz der Zelle. Naturwissenschaften 29: 33–43CrossRefGoogle Scholar
  8. Crick F (1971) General model for the chromosomes of higher organisms. Nature 234:25PubMedCrossRefGoogle Scholar
  9. Darnell Jr JE (1982) Variety in the level of gene control in eukaryotic cells. Nature 297: 365–371PubMedCrossRefGoogle Scholar
  10. Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure vom Typ der Thymonukleinsäure und die darauf beruhende Elektive von Zellkernen in mikroskopischen Präparaten. Z Physiol Chem 135: 203CrossRefGoogle Scholar
  11. Klug A (1983) From macromolecules to biological assemblies. Biosci Rep 3:395–430 PubMedCrossRefGoogle Scholar
  12. McClintock B (1984) The significance of responses of the genome to challenge. Science 226: 792–801PubMedCrossRefGoogle Scholar
  13. Nevins JR (1983) The pathway of eukaryotic mRNA formation. Annu Rev Biochem 52: 441–466PubMedCrossRefGoogle Scholar
  14. Watson JD, Crick FA (1953) Structure for DNA. Nature 171: 737PubMedCrossRefGoogle Scholar
  15. Weisbrod S (1982) Active Chromatin. Nature 297: 289–295PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Jean Brachet
    • 1
  • Henri Alexandre
    • 1
  1. 1.Département de Biologie Moléculaire, Laboratoire de Cytologie et Embryologie MoléculairesUniversité Libre de BruxellesRhode-St.-GenèseBelgique (Belgium)

Personalised recommendations