Elastic-Plastic Structures under Variable Loads at Small Strains and Moderate Rotations

  • D. Weichert
Conference paper
Part of the Lecture Notes in Engineering book series (LNENG, volume 19)


The long-time behaviour of elastic-plastic structures under variable loads is investigated. In particular, shakedown-conditions are derived for shell-like structures undergoing moderate rotations at small strains.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MELAN, E. Theorie statisch unbestimmter Tragwerke aus ideal-plastischem Baustoff, Sitzungsbericht der Akademie der Wissenschaften, Wien, Abt. IIa, p.195 (1938).Google Scholar
  2. [2]
    KOITER, W.T. Progress in solid mechanics (Ed. Sneddon, I.N. & Hill, R.), North-Holland, p. 167 (1960).Google Scholar
  3. [3]
    MAIER, G A shakedown matrix theory allowing for workhardening and second-order geometric effects, Foundations in Plasticity (Ed. Cohn, M.Z. & Maier, G.) North-Holland, p.417 (1973).Google Scholar
  4. [4]
    MAIER, G. Shakedown analysis, Structural Plasticity and Mathematical Programming (Ed. Sawczuk, A.) Pergamon Press, p.107 (1979).Google Scholar
  5. [5]
    KÖNIG, J.A. & MAIER, G. Shakedown analysis of elastic plastic structures: A review of recent developements, Nucl. Engng. & Design,6, p.81 (1981).CrossRefGoogle Scholar
  6. [6]
    MAIER, G. & MUNRO, J. Mathematical programming application to engi neering plastic analysis, Appl. Mec. Rev., 35, 12, p.1631 (1982).Google Scholar
  7. [7]
    KÖNIG, J.A. On stability of the incremental collapse process, Arch. Inz. Lad., XXVI,z.1, p.219 (1980).Google Scholar
  8. [8]
    KÖNIG, J.A. On some recent developments in the shakedown theory, Advances in Mechanics 5, 1/2, p.237 (1982) .MathSciNetGoogle Scholar
  9. [9]
    LEE, E.H. Elastic-plastic deformations at finite strains, J. Appl. Mech. 36, p.6 (1965).Google Scholar
  10. [10]
    CASEY, J. Approximate kinematic relations in plasticity, Int. J. Sol. Struct., 21, 7, p.671 (1985).MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    DUSZEK, M.K. Foundations of the non-linear plastic shell theory, Rep. 31, Inst. of Mech., Ruhr-Univers. Bochum. (1982) .Google Scholar
  12. [12]
    SCHMIDT, R. On geometrically non-linear theories for thin shells, Flexible Shells, Theory and Applications (Ed. Axelrad, E.L. and Emmerling, F .A.) Springer-Verlag, p.76 (1984).Google Scholar
  13. [13]
    WEICHERT, D. Shakedown at finite displacements, a note on MELAN’s theorem, Mech. Res. Com., 11 (2/3), p. 127 (1983) .Google Scholar
  14. [14]
    WEICHERT, D. On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures, Int. J. of Plasticity, in print.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • D. Weichert
    • 1
  1. 1.Institut für MechanikRuhr-Universität BochumWest-Germany

Personalised recommendations