On Geometrically Non-Linear Theory of Elastic Shells Derived from Pseudo-Cosserat Continuum with Constrained Micro-Rotations

  • J. Badur
  • W. Pietraszkiewicz
Part of the Lecture Notes in Engineering book series (LNENG, volume 19)


The set of equations for the geometrically non-linear theory of thin elastic shells is usually expressed in terms of displacements as basic independent variables of the shell deformation. Various general and reduced displacemental forms of bending shell equations are summarized, for example, by MUSHTARI and GALIMOV [1], KOITER [2], PIETRASZKIEWICZ [3, 4], SCHMIDT [5] and BA§AR and KRÄTZIG [6], where further references may be found. When displacement field is determined from the shell equations, strains, rotations and stresses may be obtained by prescribed algebraic or differential procedures.


Strain Energy Density Shell Theory Elastic Shell Cosserat Continuum Finite Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MUSHTARI K.M. and GALIMOV K.Z., Non-linear theory of elastic shells (in Russian), Tatknigoizdat, Kazań 1957.Google Scholar
  2. 2.
    KOITER W.T., On the nonlinear theory of thin elastic shells, Proc. Koninkl. Ned. Ak. Wet. B69 (1966 ), 1, 1–54.MathSciNetGoogle Scholar
  3. 3.
    PIETRASZKIEWICZ W., Finite rotations in the non-linear theory of thin shells, in: Thin Shell Theory, New Trends and Applications, 155–208, ed. by W. Olszak, CISM Course No 240, Springer-Verlag, Wien 1980.Google Scholar
  4. 4.
    PIETRASZKIEWICZ. W., Lagrangian description and incremental formulation in the non-linear theory of thin shells, Int. J. Non-Linear Mech., 19(1984), 2, 115–141.MATHADSCrossRefGoogle Scholar
  5. 5.
    SCHMIDT R., A current trend in shell theory: constrained geometrically nonlinear Kirchhoff-Love type theories based on polar decomposition of strains and rotations, Comp. and Str., 20 (1985 ), 1–3, 265–275.CrossRefGoogle Scholar
  6. 6.
    BA§AR Y. and KRÄTZIG W.B., Mechanik der Flächentragwerke, Vieweg, Braunschweig 1985.Google Scholar
  7. 7.
    ALUMÄE N.A., Differential equations of equilibrium states of thin--walled elastic shells in the post-critical stage (in Russian), Prikl.Mat.Mekh 13(1949), 1, 95–106.MATHGoogle Scholar
  8. 8.
    REISSNER E., On axisymmetric deformations of thin shells of revolution, Proc. Symp. Appl. Math., 3(1950), 27–52.MathSciNetGoogle Scholar
  9. 9.
    WEMPNER G., Finite elements, finite rotations and small strains, Int. J. Solids and Str., (1969), 5, 117–153.MATHCrossRefGoogle Scholar
  10. 10.
    SIMMONDS J.G. and DANIELSON D.A., Nonlinear shell theory with a finite rotation and stress-function vectors, J. Appl. Mech., Trans. ASME E39(1972), 4, 1085–1090.ADSCrossRefGoogle Scholar
  11. 11.
    SIMMONDS J.G. and DANIELSON D.A., Nonlinear shell theory with a: finite rotation vector, Proc. Koninkl. Ned. Ak. Wet. B73(1970), 5, 460–478.MathSciNetGoogle Scholar
  12. 12.
    PIETRASZKIEWICZ W., Introduction to the Non-linear Theory of Shells, Ruhr-Universität, Mitt. Inst. f. Mech. Nr 10, Bochum, Mai 1977, 1–154.Google Scholar
  13. 13.
    PIETRASZKIEWICZ W., Obroty skończone i opis Lagrange’a w nieliniowej teorii powłok, Biul. IMP PAN 172(880), Gdańsk 1976. English transi.: Finite Rotations and Lagrangean Description in the Non--Linear Theory of Shells, Polish Sci. Publ., Warszawa-Poznań 1979.Google Scholar
  14. 14.
    PIETRASZKIEWICZ W., Finite rotations in shells, in: Theory of Shells, 445–471, Ed. by W.T.Koiter and G.K.Mikhailov, North-Holland P.Co., Amsterdam 1980.Google Scholar
  15. 15.
    SHKUTIN L.I., An exact formulation of equations of the non-linear deformation of thin shells (in Russian), in: Applied Problems of Strength and Plasticity (in Russian), 7(1977), 3–9; 8(1978), 38–43; 9(1978), 19–25.Google Scholar
  16. 16.
    LIBAI A. and SIMMONDS J.G., Nonlinear elastic shell theory, in: Advances In Applied Mechanics, vol.23, 271–371, Academic Press, New York 1983.Google Scholar
  17. 17.
    ATLURI S.N., Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells-I. Theory, Comp. and Str. 18(1984), 1, 93–116.MATHMathSciNetGoogle Scholar
  18. 18.
    KAYUK Ya.F. and SAKHATSKIY V.G., On the non-linear theory of shells based on the notion of a finite rotation, Soviet Applied Mechanics, 21(1985), 4, 65–73.CrossRefGoogle Scholar
  19. 19.
    MAKOWSKI J. and STUMPF H., Finite strains and rotations in shells, in: Finite Rotations in Structural Mechanics, ed, by W. Pietraszkiewicz, Springer-Verlag, Berlin 1986.Google Scholar
  20. 20.
    COSSERAT E. and COSSERAT F., Theorie des Corps deformables, Herman, Paris 1909.Google Scholar
  21. 21.
    NAGHDI P.M., The theory of shells and plates, in: Handbuch der Physik, vol. VI/2, Springer-Verlag, Berlin 1972.Google Scholar
  22. 22.
    SCHROEDER F.H., Cosserat theory of shells with large rotations and displacements, lecture presented at the Euromech Colloquium 165 “Flexible Shells”, 17–20 May, München 1983.Google Scholar
  23. 23.
    ERINGEN A.C. and KAFADAR C.B., Polar field theories, in: Continuum Physics, vol IV, 1–73, ed. by A.C. Eringen, Academic Press, New York 1976.Google Scholar
  24. 24.
    TOUPIN R.A., Theories of elasticity with couple-stresses, Arch. Rat. Mech. Anal., 17 (1964), 2, 85–110.MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    KOITER W.T., Couple-stresses in the theory of elasticity, Proc. Koninkl. Ned. Ak. Wet., B67 (1964), 1, 17–29;. B67 (1964), 1, 30–48.Google Scholar
  26. 26.
    SHKUTIN L.I., Non-linear models for deformable continuum with couple-stresses (in Russian), Zhurnal Prikl. Mekh. Tekh. Fiz., 1980, 6, 111–117.MathSciNetGoogle Scholar
  27. 27.
    KOITER W.T., A consistent first approximation in the general theory of thin elastic shells, in: The Theory of Thin Elastic Shells, 12–33, Ed. by W.T. Koiter, North-Holland P.Co., Amsterdam 1960.Google Scholar
  28. 28.
    PIETRASZKIEWICZ W. and BADUR J., Finite rotations in the description of continuum deformation, Int. J. Engng Sci., 21(1983), 9, 1097–1115.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    TRUESDELL C. and NOLL W., The Nonlinear Field Theories of Mechanics, in: Handbuch der Physik, vol. III/3, Springer-Verlag, Berlin 1965.Google Scholar
  30. 30.
    HILL R., On constitutive inequalities for simple materials, Int. J. Mech. Phys. Solids, 16(1968), 5, 229–241.MATHADSCrossRefGoogle Scholar
  31. 31.
    BUDIANSKY B. and SANDERS J.L., On the “best” first-order linear shell theory, in: Progress in Applied Mechanics (Prager Anniv. Vol) 129–140, Macmillan, New York 1963.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • J. Badur
    • 1
  • W. Pietraszkiewicz
    • 1
  1. 1.Institute of Fluid-flow Machinery of the Polish Academy of SciencesGdańskPoland

Personalised recommendations