Skip to main content

Polar Decomposition and Finite Rotation Vector in First — Order Finite Elastic Strain Shell Theory

  • Conference paper
Finite Rotations in Structural Mechanics

Part of the book series: Lecture Notes in Engineering ((LNENG,volume 19))

Abstract

While large strain membrane theories are well established in literature since more than three decades, there exist considerably less papers which deal with large elastic strain shell theory incorporating also the bending effects into the nonlinear analysis. Recently, however, this topic has gained considerable interest. Important contributions have been given by CHERNYKH [1,2] , LIBAI and SIMMONDS [5,6] , and SIMMONDS [20] , where also additional references on related works may be found. The aforementioned authors agree that such a theory should be based on a refined Kirchhoff-Love type model which admits at least changes in shell thickness. Due to bending this thickness change is in general asymmetric about the undeformed midsurface so that its deformed configuration is no longer the geometrical midsurface of the deformed shell. This requires a representation of the position vector of the deformed shell space which incorporates at least quadratic terms with respect to the thickness coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CHERNYKH K.F., Mechanics of Solids 15 (1980), No.2, 118–127, Transl. of Mekhanika Tverdogo Tela 15 (1980), No.2, 148–159.

    MathSciNet  Google Scholar 

  2. CHERNYKH K.F., Advances in Mechanics 6 (1983), 111–147 (in Russian).

    Google Scholar 

  3. CHERNYKH K.F., In: Mechanics of Deformable Continuum, 9–72 (in Russian), Kuybyshev State University 1976.

    Google Scholar 

  4. KORN G.A., KORN T.M., Mathematical Handbook for Scientists and Engineers, 2nd ed., Mc Graw-Hill, New York 1968.

    Google Scholar 

  5. LIBAI A., SIMMONDS J.G., Int.J.Non-Linear Mechanics 16 (1981), 91-l03.

    Article  MATH  ADS  Google Scholar 

  6. LIBAI A., SIMMONDS J.G., Int.J.Non-Linear Mechanics 18 (1983), 181–197.

    Article  MATH  ADS  Google Scholar 

  7. LUR’E A.I., Analytical Mechanics (in Russian), Nauka, Moscow 1961.

    Google Scholar 

  8. PARS L.A., A Treatise on Analytical Dynamics, Heinemann, London 1965.

    MATH  Google Scholar 

  9. PIETRASZKIEWICZ W., Finite Rotations and Langrangean Description in the Non-Linear Theory of Shells, Polish Scientific Publishers, Warszawa-Poznań 1979.

    Google Scholar 

  10. PIETRASZKIEWICZ W.,In: Theory of Shells, eds. W.T. Koiter; G.K. Mikhailov, 445–471, North-Holland Publ. Co., Amsterdam-New York-Oxford 1980.

    Google Scholar 

  11. PIETRASZKIEWICZ W., Mitteilungen aus dem Institut für Mechanik, Nr. l0, Ruhr-Universität Bochum 1977.

    Google Scholar 

  12. PIETRASZKIEWICZ W., BADUR J., Int.J.Engrg.Sci. 21 (1983), 1097–1115.

    Article  MATH  MathSciNet  Google Scholar 

  13. SCHMIDT R., Proc. of the Symp. on Advances and Trends in Structures and Dynamics, Washington 1984, eds. A.K. Noor; R.J. Hayduk, 265–275, Pergamon Press, New York, reprinted as Computers and Structures 20 (1985), 265–275.

    Google Scholar 

  14. SCHMIDT R., Contributions to the Nonlinear Theory of Thin Elastic Shells, Part II, Lecture XVI IUTAM Int.Congr. of Theoretical and Applied Mechanics, Lyngby, 19.-25.8.1984, to be published.

    Google Scholar 

  15. SCHROEDER F.-H., Ingenieur-Archiv 39 (1970), 87-l03.

    Article  MATH  Google Scholar 

  16. SCHROEDER F.-H., Cosserat Theory of Shells with Large Rotations and Displacements, Lecture EUROMECH-Colloquium Nr. 165 “Flexible Shells, Theory and Applications”, München, May 17–20, 1983.

    Google Scholar 

  17. SHAMINA V.A., Mechanics of Solids 9 (1974), No.1, 9–16, Transl. of Mekhanika Tverd. Tela 9 (1974), No.1, 14–22.

    MathSciNet  Google Scholar 

  18. SIMMONDS J.G., DANIELSON D.A., Proc.Kon.Ned.Ak.Wet.Ser.B 73 (1970), 460–478.

    MATH  MathSciNet  Google Scholar 

  19. SIMMONDS J.G., DANIELSON D.A., J.Appl.Mech. 39 (1972), 1085–1090.

    Article  MATH  ADS  Google Scholar 

  20. SIMMONDS J.G., Int.J.Solids Structures 21 (1985), 67–77.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Schmidt, R. (1986). Polar Decomposition and Finite Rotation Vector in First — Order Finite Elastic Strain Shell Theory. In: Pietraszkiewicz, W. (eds) Finite Rotations in Structural Mechanics. Lecture Notes in Engineering, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82838-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82838-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16737-2

  • Online ISBN: 978-3-642-82838-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics