Theoretical Calculation of CTOD Using a Dugdale Model Including Strain Hardening for Surface Cracks

  • C. Mattheck
  • F. Görner
Conference paper


A generalized Dugdale model is used to predict ligament yielding and ligament rupture of semi-elliptical surface cracks. Strain hardening effects are regarded approximately. The weight function method is used to calculate the stress intensity factors due to the plastic stresses acting in the yield zone.

The CTOD is calculated at the deepest point of the semi-elliptical surface crack. Good agreement with experiments is shown.


Stress Intensity Factor Plastic Zone Crack Mouth Opening Displacement Yield Zone Plastic Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Dugdale, D. Yielding of Steel Containing Hits J.Mech.Phys.Sol. 8(1960)100Google Scholar
  2. /2/.
    Newman, J.C. Fracture of Cracked Plates Under Plane Stress Eng.Fract.Mech. 1(1968)137Google Scholar
  3. /3/.
    Hoffmann, M. Ein erweitertes Dugdale Modell Studienarbeit am Institut für Mechanik (Prof.Gross) TH Darmstadt, W-GermanyGoogle Scholar
  4. /4/.
    Mattheck, C., Morawietz, P., Munz, D.Ligament instability of Semi-elliptical Surface Cracks in Plates and Pipes SMIRT 1983, Chicago USA, Paper-No. G/F4/6Google Scholar
  5. /5/.
    Mattheck, C., Morawietz, P., Munz, D.Ligament Yielding of a Plate with Semi-elliptical Surface Cracks Under Uniform Tension J. Press.Ves.Piping 16(1984)131Google Scholar
  6. /6/.
    Mattheck, C., Görner, F.Leak Prediction by Use of a Generalized Dugdale Model for Semi-elliptical Surface Cracks in Plates Proc. of 5th European Conf.Fract.,Lissabon 1984Google Scholar
  7. /7/.
    Cruse, T., Besuner, P.Residual Life Prediction for Surface Cracks in Complex Structural Details Journ. of Aircraft 12(1975)369Google Scholar
  8. Mattheck, C., Morawietz, P., Munz, D.Stress Intensity Factors at the Surface and the Deepest Point of a Semi-elliptical Surface Crack in Plates Under Stress Gradients Int.J.Fract. 23 (1983) 201Google Scholar
  9. Newman, J.,Raju, I. An Empirical Stress Intensity Factor Equation for the Surface Crack Eng.Fract.Mech. 15 (1981) 185Google Scholar
  10. /10/.
    Mattheck, C., Munz, D. EASY- A Fracture Mechanics Computer Program on the Basis of the Weight Function Method Nuclear Research Center Karlsruhe, West-GermanyGoogle Scholar
  11. /11/.
    Mattheck, C., Gross, D. A Dugdale Model Including Strain Hardening for Through Wall and Surface Cracks SMIRT 1985, Bruxelles, Paper-NO. G4 /9Google Scholar
  12. /12/.
    Hasegawa, K., Sakata, S. Prediction of Fracture Tolerances for Stainless Steel Pipes with Circumferential Cracks ASME 4th PVP Congress, Session 24Google Scholar
  13. /13/.
    Petroski, J., Achenbach, J. Computation of a Weight Function from a Stress Intensity Factor,Eng.Fract.Mech. 10 (1978) 257Google Scholar
  14. /14/.
    / Göring, J. Versagensverhalten von Flachzugproben mit einem halbelliptischen Riß aus einem Werkzeugstahl Diplomarbeit am Institut für Zuverlässigkeit und Schadenskunde im Maschinenbau,Universität Karlsruhe 1983Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • C. Mattheck
    • 1
  • F. Görner
    • 1
  1. 1.Institut für Reaktorbauelemente, Arbeitsgruppe Zuverlässigkeit und Schadenskunde im MaschinenbauKernforschungszentrum KarlsruheKarlsruheW-Germany

Personalised recommendations