Skip to main content

Numerical Evaluation of Crack Tip Opening Displacements: 2D and 3D Applications

  • Conference paper
The Crack Tip Opening Displacement in Elastic-Plastic Fracture Mechanics

Summary

The numerical tools to compute elastic-plastic crack tip loading parameters J and CTOD are well established for arbitrary geometry and loading situations also including temperature gradients and stable crack propagation. The evaluation of J is possible with only minimum requirements concerning mesh refinement and numerical effort. The determination of CTOD requires increased but not prohibitively large effort concerning mesh refinement and evaluation time. The correlation of J and CTOD postulated from continuum mechanics considerations could be verified numerically and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cherepanov, G.P.: Crack propagation in continuous media, J.Appl. Math. Mech. (PMM) 31 (1967) 476–485

    Google Scholar 

  2. Rice, J.R.: A path independent integral and the approximate analysis of strain concentrations by notches and cracks, J.Appl. Mech. 35 (1968)

    Google Scholar 

  3. ASTM E 813–81: Standard test for JIc, a measure of fracture tough-ness, Annual Book of ASTM Standards, Part 10, Philadelphia (1981)

    Google Scholar 

  4. BS 5762: 1979: Methods for crack opening displacement ( COD) testing, British Standards Institution (1979)

    Google Scholar 

  5. Kumar, V., German, M.D. and Shih, C.F.: An engineering approach for elastic-plastic fracture analysis, report no. NP-1931, EPRI, Palo Alto (1981)

    Google Scholar 

  6. Zienkiewicz, O.C.: The finite element method, Mc Graw-Hill, London (1977)

    MATH  Google Scholar 

  7. Bathe, K.J. and Wilson, E.L.: Numerical methods in finite element analysis, Prentice-Hall, New Jersey (1976)

    MATH  Google Scholar 

  8. Tracey, D.M.: Finite elements for the three-dimensional elastic crack analysis, Nucl. Eng. Design 26 (1974) 282–290

    Article  Google Scholar 

  9. Henshell, R.D. ans Shaw, K.G.: Crack tip finite elements are unnecessary, Int. Num. Meth. Engn. 9 (1975) 469–507

    Google Scholar 

  10. Barsoum, R.S.: Triangular quarter-point elements as elastic and perfectly plastic tip elements, Int. J.Num. Meth. Engn. 11 (1977) 85–98

    Article  MATH  Google Scholar 

  11. Parks, D.M.: The virtual crack extension for non-linear material behavior, Comp. Meth. in Appl. Mech. & Engn. 12 (1977) 353–364

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Hollstein, T.: Experimentelle Untersuchungen zum Verhalten von Rissen bei elasto-plastischen Werkstoffverformungen, IWM-Bericht W 1/82, Fraunhofer-Institut für Werkstoffmechanik, Freiburg, FRG (1982)

    Google Scholar 

  13. Schmitt, W.: Anwendung der Methode der finiten Elemente in der Bruchmechanik unter besonderer Berücksichtigung dreidimensionaler und elastisch-plastischer Probleme, IWM-Bericht W 2/82, Fraunhofer-Institut für Werkstoffmechanik, Freiburg, FRG (1982)

    Google Scholar 

  14. Hollstein, T., Schmitt, W. and Blauel, J.G.: Numerical analysis of ductile fracture experiments using single-edge-notched tension specimens, Journal of Testing and Evaluation, JTEVA, 11 (1983) 174–181

    Google Scholar 

  15. Hollstein, T., Blauel, J.G. and Voss, B.: On the determination of elastic-plastic material parameters–a comparison of different test methods, ASTM STP 856 (1984) 104–116

    Google Scholar 

  16. Voss, B. and Mayville, R.A.: On the use of partial unloading compliance method for the determination of J-R curves and JIc, ASTM STP 856 (1984) 117–130

    Google Scholar 

  17. Schmitt, W. and Voss„ B.: Numerical simulation of post-yield fracture mechanics experiments as a basis for the transferability to components, Nuclear Engineering and Design 81 (1984) 247–255

    Article  Google Scholar 

  18. Schmitt, W., Siegele, D., Kordisch, H. and Baudendistel, E.: Transferability of results of small scale experiments to real structures, Nuclear Engineering and Design 81 (1984) 247–255

    Article  Google Scholar 

  19. Schmitt, W.: Three-dimensional finite element simulation of post-yield fracture experiments, in: Computational Fracture Mechanics-Nonlinear and 3-D Problems, PVP-Vol: 85, AMD-Vol. 61 (1984) 119–131

    Google Scholar 

  20. Schmitt, W., Blauel„ J.G., Hodulak, L. und Janski, J.: Rißfortschrittsberechnungen (30-FE) für die Stutzenkante des RDB bei Thermoschock und erster Vergleich mit Versuchsergebnissen, HDR-Sicherheitsprogramm, 8. Statusbericht 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Schmitt, W., Hollstein, T. (1986). Numerical Evaluation of Crack Tip Opening Displacements: 2D and 3D Applications. In: Schwalbe, K.H. (eds) The Crack Tip Opening Displacement in Elastic-Plastic Fracture Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82818-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82818-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82820-1

  • Online ISBN: 978-3-642-82818-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics