Skip to main content

Summary

Constitutive relations and finite element formulations for elastic-plastic and rigid-plastic materials in sheet metal forming analysis are reviewed. In the present study an elastic-plastic material model and a Total Lagrangian finite element formulation is used. Arbitrarily shaped punches and dies can be treated. The interface contact forces between the tools and the metal sheet are assumed to be either of Coulomb friction type or simply a constant shear stress. The effects of various material parameters and friction in the strain distribution in hemispherical punch stretching have been investigated numerically and are shown in diagrams. A few experimentally determined strain distributions are shown and are compared with results from finite element calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hutchinson, J.W.: Finite strain analysis of elastic-plastic solids and structures. Numerical solution of nonlinear structural problems (ed. Hartung), AMD-Vol. 6, ASME, New York, 1973.

    Google Scholar 

  2. Hill, R.: The mathematical theory of plasticity. Clarendon Press, Oxford, 1950.

    MATH  Google Scholar 

  3. Wang, N.-M.; Budiansky, B.: Analysis of sheet metal stamping by a finite element method. ASME J. of Appl. Mech. 45 (1978), pp.73–82.

    Article  MATH  Google Scholar 

  4. Mattiasson, K.: Continuum mechanics principles for large deformation problems in solid and structural mechanics. Chalmers University of Technology, Department of Structural Mechanics, Publ. 81:6, Göteborg, 1981.

    Google Scholar 

  5. Mattiasson, K.: On the co-rotational finite element formulation for large deformation problems, (doctoral thesis). Chalmers University of Technology, Department of Structural Mechanics, Publ. 83:1, Göteborg, 1983.

    Google Scholar 

  6. Zienkiewicz, O.C.; Godbole, P.N.: Flow of plastic and viscoplastic solids with special reference to extrusion and forming processes. Int. J. Num. Meth. in Eng. 8 (1974), pp. 3–16.

    MATH  Google Scholar 

  7. Zienkiewicz, O.C.; Jain, P.C.; Onate, E.: Flow of solids during forming and extrusion: Some aspects of numerical solutions. Int. J. Sol. Struct. 14 (1978), pp. 15–38.

    Article  Google Scholar 

  8. Onate, E.; Zienkiewicz, O.C.: A viscous shell formulation for the analysis of thin sheet metal forming. Int. J. Mech. Sci. 25 (5) (1983), pp. 305–335.

    Article  MATH  Google Scholar 

  9. Perzyna, P.: Fundamental problems in viscoplasticity. Recent Advances in Applied Mechanics, Academic Press, New York, 1966, pp. 243–377.

    Google Scholar 

  10. Wifi, A.S.: An incremental complete solution of the stretch forming and deep drawing of a circular blank using a hemi-spherical punch. Int. J. of Mech. Sci. 18 (1976), pp. 23–31.

    Article  MATH  Google Scholar 

  11. Andersen, B.S.: A numerical study of the deep drawing processes. Numerical Methods in Industrial Forming Processes (ed. Pittman et al.), Pineridge Press, Swansea, U.K., 1982, pp. 709–721.

    Google Scholar 

  12. Honnor, M.E.; Wood, R.D.: Finite element analysis of axi-symmetric deep drawing using a simple two-noded Mind-lin shell element. Numerical Methods for Nonlinear Problems (ed. Taylor et al.), Pineridge Press, Swansea, U.K., 1984, pp. 440–449.

    Google Scholar 

  13. Tang, S.C.: Large elasto-plastic strain analysis of flanged hole forming. Compt. Struct. 13 (1981), pp. 363–370.

    Article  MATH  Google Scholar 

  14. Wennerström, H.: Numerical and computer techniques in finite element analysis, (doctoral thesis). Chalmers University of Technology, Department of Structural Mechanics, Publ. 81:7, Göteborg, 1981.

    Google Scholar 

  15. Wennerström, H.; Samuelsson, A.; Mattiasson, K.: Finite element method for sheet metal stretching. Numerical Analysis of Forming Processes (ed. Pittman et al.), WileyInterscience, 1984, pp. 387–404 and in Numerical Methods in Industrial Forming Processes (ed. Pittman et al.), Pineridge Press, Swansea, U.K., 1982, pp. 51–65.

    Google Scholar 

  16. Zienkiewicz, O.C.; Wood, R.D.; Mattiasson, K.; Honnor, M.E.: Viscous flow and solid mechanics approaches to the analysis of thin sheet forming, Computer Modelling of the Sheet Forming Process - Theory, Verification and Applications (will be published by AIME, 1985 ).

    Google Scholar 

  17. Baynham, J.M.W.; Zienkiewicz, O.C.: Developments in the finite element analysis of thin sheet drawing and direct redrawing processes, using a rigid/plastic approach. Numerical Methods in Industrial Forming Processes (ed. Pittman et al), Pineridge Press, Swansea, U.K., 1982, pp. 697–707.

    Google Scholar 

  18. Zienkiewicz, O.C.: Flow formulation for the numerical solution of forming processes. Numerical Analysis of Forming Processes (ed. Pittman et al.), Wiley-Interscience, 1984, pp. 1–44.

    Google Scholar 

  19. Osakada, K.; Nakano, J.; Mori, K.: Finite element method for rigid-plastic analysis of metal forming–formulation for finite deformation. Int. J. Mech. Sci., Vol. 24, No. 8 (1982), pp. 459–468.

    Article  MATH  Google Scholar 

  20. Kobayashi, S.; Kim, J.H.: Deformation analysis of axisymmetric sheet metal forming processes by the rigid-plastic finite element method. Mechanics of Sheet Metal Forming (eds. Koistinen, D.P. and Wang, N.-M. ), Plenum Press, New York, 1978.

    Google Scholar 

  21. Toh, C.H.; Kobayashi, S.: Finite element process modeling of sheet metal forming of general shapes. Proc. of the Int. Conf. on Fundamentals of Metal Forming Technique–States and Trend, Stuttgart, October 1983, pp. 39–56.

    Google Scholar 

  22. Wang, N.-M.: A rigid-plastic rate-sensitive finite element method for modelling sheet metal forming processes. Numerical Analysis of Forming Processes (ed. Pittman et al.), Wiley-Interscience, 1984.

    Google Scholar 

  23. Wang, N.-M.; Wenner, M.L.: Elastic-viscoplastic analysis of simple stretch forming problems. Mechanics of Sheet Metal Forming (eds. Koistinen, D.P. and Wang, N.-M.) PlePlenum Press, New York, 1978.

    Google Scholar 

  24. Neale, K.W.; Chater, E.: Limit strain predictions for strain-rate sensitive anisotropic sheets. Int. J. Mech. Sci., Vol. 22 (1980), pp. 563–574.

    Article  MATH  Google Scholar 

  25. Chater, E.; Neale, K.W.: Finite plastic deformation of a circular membrane under hydrostatic pressure–II, strain-rate effects. Int. J. Mech. Sci., Vol. 25 (1983), pp. 235–244.

    Article  MATH  Google Scholar 

  26. Tillerson, J.R.; Stricklin, J.A.; Heisler, W.C.: Numerical methods for solution of nonlinear problems in structural analysis. Numerical Solution of Nonlinear Structural Problems (ed. Hartung), AMD-Vol. 6, ASME, New York, 1973.

    Google Scholar 

  27. Melander, A.; Schedin, E.; Karlsson, S.; Steninger, J.: A theoretical and experimental Study of the forming limit diagram of deep drawing steels, phase steels, austeand steels, austenitic and ferritic stainless Steels, Scand. J. Met., (1985), to be published.

    Google Scholar 

  28. Melander, A.; Thuvander, A.: Influence of surface roughness and void growth at inclusions on the forming limit diagram of brass. Scand. J. Met., Vol. 12 (1983), PP. 217–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Mattiasson, K., Melander, A. (1986). Numerical Simulation of Stretch Forming Processes. In: Lange, K. (eds) Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I). Berichte aus dem Institut für Umformtechnik der Universität Stuttgart, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82810-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82810-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16592-7

  • Online ISBN: 978-3-642-82810-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics