Skip to main content

Elastic-Plastic Three-Dimensional Finite-Element Analysis of Bulk Metalforming Processes

  • Conference paper
Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I)

Summary

An elastic-plastic three-dimensional finite-element formulation is presented for the study of bulk metalforming problems. The incremental technique is based upon the Prandtl-Reuss flow rule and von Mises’ yield criterion, and incorporates a finite-deformation formulation using correct definitions of stress and strain increment for accurate and efficient solution of large-strain analyses.

The finite-element technique has been used to model a number of metalforming processes: the forging of rectangular blocks and a connecting rod, the rolling of thick steel billets and the plane-strain side pressing of circular and shaped sections. These results illustrate the ability of the technique to predict not only flow patterns and forming loads, but also components of stress and the location of ductile fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kobayashi, S.: A review on the finite-element method and metal forming process modelling. J. App. iietalwkg. (1982) 2, pp. 163–169.

    Article  Google Scholar 

  2. Mori, K.; Osakada, K.: Simulation of three-dimensional rolling by the rigid-plastic finite element method. Proc. 1st Int. Conf. on Numerical Methods in Ind. Forming Processes, Swansea, UK (1982) pp. 747–756.

    Google Scholar 

  3. Sun, J.; Li, G.; Kobayashi, S.: Analysis of spread in flat-tool forging by the finite element method. Proc. 11th N. Amer. hetalwkg. Res. Conf. (1983) pp. 224–231.

    Google Scholar 

  4. Webster, W.: A three-dimensional analysis of extrusion and metalforming by the finite element method. Ph.D. thesis, University of Missouri-Rolla, USA (1978).

    Google Scholar 

  5. Sebastian, I.A.; Rodriguez, P.; Sanchez, A.M.: A method of discretisation and an approach to three-dimensional deformation analysis of extrusion by the finite element method. Proc. 1st. Int. Conf. on Numerical Methods in Ind. Forming Processes, Swansea, UK (1982) pp. 227–236.

    Google Scholar 

  6. Nagamatsu, A.: Analysis of contact pressure and deformation of square blocks in elastic-plastic compression by the finite element method. J. Jap. Soc. Tech. Plasticity (in Japanese) (1973) 14, pp. 220–229.

    Google Scholar 

  7. Park, J.J.; Kobayashi, S.: Three-dimensional finite element analysis of block compression. Int. J. Mech. Sci. (1984) 26, pp. 165–176.

    Article  MATH  Google Scholar 

  8. Hill, R.: Some basic principles in the mechanics of solids without a natural time. J. Mech. and Phys. of Solids (1959) 7, pp. 209–225.

    Article  MATH  Google Scholar 

  9. Lee, E.H.: The basis of an elastic-plastic code. SUDAN rep. no. 76–1, Stanford, USA (1976).

    Google Scholar 

  10. Pillinger, I.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: A new linearised definition of strain increment for the finite-element analysis of deformations involving finite rotation. Submitted to Int. J. Mech. Sci.

    Google Scholar 

  11. Lee, E.H.; NcHeeking, R.M.: Concerning the elastic and plastic components of deformation. Int. J. of Solids and Structures (1980) 16, pp. 715–721.

    Article  MATH  Google Scholar 

  12. Drucker, D.C.: A more fundamental approach to plastic stress-strain relations. Proc. 1st Nat. Cong. on Applied Mech. (1951) pp. 487–491.

    Google Scholar 

  13. Hill, R.: The mathematical theory of plasticity. Clarendon Press, Oxford (1950).

    MATH  Google Scholar 

  14. Yamada, Y.; Yoshimura, N.; Sakurai, T.: Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int. J. Mech. Sci. (1968) 10, pp. 343–354.

    Article  MATH  Google Scholar 

  15. Nagtegaal, J.C.; de Jong, J.E.: Some computational aspects of elastic-plastic large strain analysis. Computational Methods in Nonlinear Mechanics, ed. J.T. Oden, North-Holland (1980) pp. 303–339.

    Google Scholar 

  16. Nagtegaal, J.C.; Parks, D.H.; Rice, J.P..: On numerically accurate finite element solutions in the fully plastic range. Computer Meth. App. Mech. and Eng. (1974) 4, pp. 153–177.

    MATH  MathSciNet  Google Scholar 

  17. Pillinger, I.: The prediction of metal flow and properties in three-dimensional forgings using the finite-element method. Ph.D. thesis, University of Birmingham, UK (1984).

    Google Scholar 

  18. Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: Friction in finite-element analyses of metalforming processes. Int. J. Mech. Sci. (1979) 21, pp. 301–311.

    Article  MATH  Google Scholar 

  19. Rice, J.R.; Tracey, D.H.: Computational fracture mechanics. Numerical and Computer Methods in Structural mechanics, ed. S.J. Fenves, N. Perrone, A.R..Robinson and W.C. Schnobrich, Academic Press, New York (1973).

    Google Scholar 

  20. Tracey, D.H.: Finite element solutions for crack-tip behaviour in small-scale yielding. Trans. ASIŒ, J. Engg. Materials and Tech. (1976) 98, pp. 146–151.

    Article  Google Scholar 

  21. Alexander, J,G.; Price, J. W. H.: Finite element analysis of hot metal forming. Proc. 13th Machine Tool Design and Research Conf. (1977) pp. 267–274.

    Google Scholar 

  22. Pillinger, I.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: An elastic-plastic three-dimensional finite-element analysis of the upsetting of rectangular blocks and experimental comparison. To be published in Int.J. Machine Tool Design and Research (1985).

    Google Scholar 

  23. Al-Sened, A.A.K.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.H.: Forming sequences in axi-symmetric cold-forging. Proc. 12th. N. Amer. iietalwkg. Res. Conf. (1934) pp. 151–153.

    Google Scholar 

  24. Pillinger, I.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: A three-dimensional finite-element analysis of the cold forging of a model aluminium connecting rod. To be published in Proc. I. Mech. E. (1985).

    Google Scholar 

  25. Liu, C.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: Elastic-plastic finite-element modelling of cold rolling of strip. To be published in Int. J. Mech. Sci. (1985).

    Google Scholar 

  26. Liu, C.: Modelling of strip and three-dimensional rolling using an elastic-plastic finite-element method. Ph. D. thesis, University of Birmingham, UK (1985).

    Google Scholar 

  27. Lahoti, G.D.; Akgerman, N.; Oh, S.I.; Altan, T.: Computer-aided analysis of metal flow and stresses in plate rolling. J. Mech. Working Tech. (1980) 4, pp. 105–119.

    Article  Google Scholar 

  28. Clift, S.E.: Identification of defect locations in forged products using the finite-element method. Ph. D. thesis, University of Birmingham, UK (1985).

    Google Scholar 

  29. Clift, S.E.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: Fracture initiation in plane-strain forging. Proc. 25th. Machine Tool Design and Research Conf. (1985) pp. 413–419.

    Google Scholar 

  30. Freudenthal, A.M.: The inelastic behaviour of engineering materials and structures. Wiley, New York (1950).

    Google Scholar 

  31. Cockroft, H.C.; Latham, U.J.: Ductility and workability of metals. J. Inst. Metals (1968) 96, pp. 33–39.

    Google Scholar 

  32. Brozzo, P.; Deluca, B.; Rendina, R.: A new method for the prediction of the formability limits of metal sheets. Proc. 7th. Congress of the Int. Deep Drawing Research Group (1972).

    Google Scholar 

  33. Eames, A.: A computer system for forging die design and flow simulation.:1Sc. thesis, University of Birmingham, UK (1985).

    Google Scholar 

  34. Pillinger, I.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.H.: Thermo-mechanical finite-element analysis of metalforming. Proc. 4th. Int. Conf. on Thermal Problems (1985).

    Google Scholar 

  35. Hussin, A.A.M.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: Finite-element plasticity on microcomputers. Stress analysis and the Micro Conf. City University, London (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Pillinger, I., Hartley, P., Sturgess, C.E.N., Rowe, G.W. (1986). Elastic-Plastic Three-Dimensional Finite-Element Analysis of Bulk Metalforming Processes. In: Lange, K. (eds) Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I). Berichte aus dem Institut für Umformtechnik der Universität Stuttgart, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82810-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82810-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16592-7

  • Online ISBN: 978-3-642-82810-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics