Skip to main content

Thermomechanical Analysis of Metal Forming Processes Through the Combined Approach FEM/FDM

  • Conference paper
Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I)

Summary

During a forming process, the temperature of the formed part increases due to the conversion of the forming energy and the friction losses into heat. This causes the thermomechanical behaviour of the material, if the material is temperature-sensitive. The plastic deformation and the temperature change are coupled with each other, hence it is necessary to develop an effective and economic method to achieve the coupled analysis.

In this paper, the method, based on the finite element method (FEM) for the plastic deformation and the finite difference method (FDM) for the heat transfer, is found to be satisfactory for the coupled analysis. This method includes many simplified numerical procedures of the FEM and the FDM to save computational time. Both cold and hot forming processes could be calculated step by step in this way to obtain the relevant data for the design of dies and manufacturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zienkiewicz, O.C.; Onate, E.; Heinrichs, J.C.: A General Formulation for Coupled Thermal Flow of Metals Using Finite Elements. Int. J. Num. Meth. Engg. 17 (1981), pp. 1497–1514.

    Article  MATH  Google Scholar 

  2. Pillinger, I.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: Thermo-Mechanical Finite-Element Analysis of Metalforming. Proc. of 4th Int. Conf. Numerical Methods in Thermal Problems, Swansea (1985).

    Google Scholar 

  3. Altan, T.; Kobayashi, S.: A Numerical Method for Estimating the Temperature Distributions in Extrusion through Conical Dies. J. Engg. Ind. 90 (1968), pp. 107–118.

    Google Scholar 

  4. Rebelo, N.; Kobayashi, S.: A Coupled Analysis of Viscoplastic Deformation and Heat Transfer, Parts I & II. Int. J. Mech. Sci. 22 (1980), pp. 699–705 & pp. 707–718.

    Article  Google Scholar 

  5. Dung, N.L.; Newerla, A.; Marten, J.: FARM Finite Element Analysis of Rigid-Plastic Metal-Forming, User’s Manual. University of Hanover, Institute of Mechanics (1982).

    Google Scholar 

  6. Marten, J.: Numerische Untersuchung des Temperatureinflusses auf technische Umformprozesse. Diplomarbeit, Universität Hannover (1983).

    Google Scholar 

  7. Mahrenholtz, O.; Westerling, C.: Untersuchung der Formgenauigkeit und der Werkzeugbeanspruchung bei Umformvorgängen - Wechselwirkung Werkstück/Werkzeug. Zwischenbericht zum DFG-Forschungsvorhaben Ma 358/28–3, Universität Hannover (1984).

    Google Scholar 

  8. Mahrenholtz, O.; Westerling, C.; Elie, W.; Dung, N.L.: Finite Element Approach to Large Plastic Deformation at Elevated Temperatures. In ‘Constitutive Equations: Macro and Computational Aspects’, Ed. by K.J. Willam, ASME (1984), pp. 165–178.

    Google Scholar 

  9. Schröder, G.; Rebelo, N.: Umformverhalten induktiv erwärmter Rohteile beim Schmieden. Wt-Z. ind. Fertig. 73 (1983), pp. 565–568.

    Google Scholar 

  10. Rohsenow, W.H.; Hartnett, J.P.: Handbook of Heat Transfer. McGraw Hill (1973).

    Google Scholar 

  11. Lu, S.: Übertragung von Modellergebnissen beim Kalt-und Warmwalzen auf Betriebsverhältnisse. Dissertation, RWTH Aachen (1984).

    Google Scholar 

  12. Oh, S.I.; Park, J.J.; Kobayashi, S.; Altan, T.: Application of FEM Modeling to Simulate Metal Flow in Forging a Titanium Alloy Engine Disk. J. Engg. Ind. 105 (1983), pp. 251–258.

    Article  Google Scholar 

  13. Dadras, P.; Thomas, J.F.: Characterization and Modelling for Forging Deformation of Ti-6A1–2Sn-4Zr-2Mo-o.lSi. Metallurgical Transactions A, 12a (1981), pp. 1867.

    Article  Google Scholar 

  14. Altenbach, J.; Sacharov, A.S.: Die Methode der finiten Elemente in der Festkörpermechanik. Carl Hanser Verlag (1982).

    Google Scholar 

  15. Emery, A.F.; Sugihara, K.; Jones, A.T.: A Comparison of Some of the Thermal Characteristics of Finite-Element and Finite-Difference Calculations of Transient Problems. Numerical Heat Transfer 2 (1979), pp. 97–113.

    Article  Google Scholar 

  16. Gray, W.H.; Schnurr, N.W.: A Comparison of the Finite Element and Finite-Difference Methods for the Analysis of Steady Two-Dimensional Heat Conduction Problems. Comp. Meth. Appl. Engg. 6 (1975), pp. 243–245.

    Article  MATH  Google Scholar 

  17. Meyer-Nolkemper, H.: Fließkurven metallischer Werkstoffe. HFF-Bericht Nr. 4, Universität Hannover (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag, Berlin, Heidelberg

About this paper

Cite this paper

Mahrenholtz, O., Westerling, C., Dung, N.L. (1986). Thermomechanical Analysis of Metal Forming Processes Through the Combined Approach FEM/FDM. In: Lange, K. (eds) Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I). Berichte aus dem Institut für Umformtechnik der Universität Stuttgart, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82810-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82810-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16592-7

  • Online ISBN: 978-3-642-82810-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics