Activated Granulocytes in the Lung Injury of Shock: Implications for Therapy

  • D. E. Hammerschmidt
Conference paper
Part of the Update in Intensive Care and Emergency Medicine book series (UICM, volume 1)


In 1971, Ratliff and co-workers [1] observed in a canine hemorrhagic shock model a leukostatic prodromal phase in pulmonary injury. Almost simultaneously, Schlag et al. in Vienna [2–4] made similar observations in lung biopsies both of experimental animals and of severely injured human patients. Thus there arose interest in the possibility that neutrophils might in some way become activated in shock, and that this activation might in some way contribute to the early phase of lung injury, and ultimately to the development of the “Shock Lung” syndrome (or ARDS [Adult Respiratory Distress Syndrome]).


Lung Injury Complement Activation Adult Respiratory Distress Syndrome Pulmonary Dysfunction Pulmonary Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ratliff NB, Wilson JW, Mikat E, Hackel DB, Graham TC (1971) The lung in hemorrhagic shock. IV. The role of the polymorphonuclear leukocyte. Am J Pathol 65: 334–352Google Scholar
  2. 2.
    Schlag G, Regele H (1972) Lungenbiopsien bei hypovolämisch-traumatischem Schock. Med Welt 23: 1755–1758PubMedGoogle Scholar
  3. 3.
    Schlag G, Blumel G, Regele H (1973) Perkutane Nadelbiopsie der Lunge bei Versuchstieren und bei schwerverletzten Patienten. In: Neue Aspekte der Trasylol-Therapie: Die Schocklunge ( G.L. Haberland and D.H. Lewis, eds.) Schattauer, Stuttgart, pp 269–274Google Scholar
  4. 4.
    Schlag G, Redl H (1980) Die Leukostase in der Lunge beim hypovolämisch-traumatischen Schock. Anæsthesist 29: 606–612PubMedGoogle Scholar
  5. 5.
    Kaplow LS, Goffinet JA (1968) Profound neutropenia during the early phase of hemodialysis. JAMA 203: 1135–1137PubMedCrossRefGoogle Scholar
  6. 6.
    Jensen DP, Brubaker LH, Nolph KD, Johnson CA, Nothum RJ (1973) Hemodialysis-coil induced transient neutropenia and overshoot neutrophilia in normal man. Blood 41: 399–408PubMedGoogle Scholar
  7. 7.
    Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS (1977) Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 296: 769–774PubMedCrossRefGoogle Scholar
  8. 8.
    Craddock PR, Fehr J, Dalmasso AP, Brigham KL, Jacob HS (1977) Hemodialysis neutropenia: pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J Clin Invest 59: 879–888PubMedCrossRefGoogle Scholar
  9. 9.
    Hammerschmidt DE, Harris PD, Wayland JH, Craddock PR, Jacob HS (1981) Complement-induced granulocyte aggregation in vivo. Am J Pathol 102: 146–150PubMedGoogle Scholar
  10. 10.
    Craddock PR, Hammerschmidt DE, White JG, Dalmasso AP, Jacob HS (1977) Complement (C5a)-induced granulocyte aggregation in vitro: a possible mechanism of complement-mediated leukostasis and leukopenia. J Clin Invest 60: 261–264CrossRefGoogle Scholar
  11. 11.
    Hammerschmidt DE, Bowers TK, Lammi-Keefe CJ, Jacob HS, Craddock PR (1980) Granulocyte aggregometry: a sensitive technique for the detection of C5a and complement activation. Blood 55: 898–902PubMedGoogle Scholar
  12. 12.
    Hammerschmidt DE, Weaver LJ, Hudson LD, Craddock PR, Jacob HS (1980) Association of complement activation and elevation of plasma-05a with adult respiratory distress syndrome: pathophysiologic relevance and possible prognostic value. Lancet 1: 947–949PubMedCrossRefGoogle Scholar
  13. 13.
    Hugli T, Chenoweth D (1980) Biologically active peptides of complement: techniques and significance of C3a and C5a measurements. In: Immunoassays: clinical laboratory techniques for the 1980s. Liss, New York, pp 443–460Google Scholar
  14. 14.
    Sacks T, Moldow CF, Craddock PR, Bowers TK, Jacob HS (1978) Oxygen radicals mediate endothelial damage by complement-stimulated granulocytes. J Clin Invest 61: 1161–1167.PubMedCrossRefGoogle Scholar
  15. 15.
    Boogaerts MA, Yamada O, Jacob HS, Moldow CF (1982) Enhancement of granulocyte adherence and granulocyte-induced cytotoxicity by platelet release products. Proc Natl Acad Sci (USA) 79: 7019–7024CrossRefGoogle Scholar
  16. 16.
    Harlan JM, Killen PD, Harker LA, Striker GE, Wright DG (1981) Neutrophil-mediated endothelial injury in vitro: mechanisms of cell detachment. J Clin Invest 68: 1394–1403.PubMedCrossRefGoogle Scholar
  17. 17.
    Weiss SJ, Klein R, Slivka A, Wei M (1982) Chlorination of taurine by human neutrophils: evidence for hypochlorous acid generation. J Clin Invest 70: 598–607PubMedCrossRefGoogle Scholar
  18. 18.
    Vercellotti GM, McCarthy J, Furcht LT, Jacob HS, Moldow CF (1983) Inflamed fibronectin: an altered fibronectin enhances neutrophil adherence. Blood 62: 1063–1069PubMedGoogle Scholar
  19. 19.
    Merritt TA, Cochrane CG, Holcomb K, Bohl B, Hallman M, Strayer D, Edwards DK (III), Gluck L (1983) Elastase and alpha-l-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. J Clin Invest 72: 656–666PubMedCrossRefGoogle Scholar
  20. 20.
    Schumer W (1976) Steroids in the treatment of clinical septic shock. Ann Surg 184: 333–341PubMedCrossRefGoogle Scholar
  21. 21.
    Lillehei RC, Dietzmann RH, Motsay GJ, Beckman CD, Romero LH, Shatney CH (1974) Growth of the concept of shock and review of present knowledge. In: Glenn TM (ed) Steroids and Shock University Park Press, Baltimore, pp 377–413Google Scholar
  22. 22.
    Sladen A (1976) Methylprednisolone: pharmacologic doses in shock lung syndrome. J Thorac Cardiovasc Surg 21: 800–805Google Scholar
  23. 23.
    Hammerschmidt DE (1983) Activation of the complement system and of granulocytes in lung injury: the adult respiratory distress syndrome. Adv Inflamm Res 5: 147–72Google Scholar
  24. 24.
    Schonfeld SA, Ploysongsang Y, DeLisio R, Crissman JD, Hammerschmidt DE, Jacob HS, Miller E (1983) Fat embolism syndrome prophylaxis with corticosteroids: a prospective study in high-risk patients. Ann Intern Med 99: 438–443PubMedGoogle Scholar
  25. 25.
    Carolla RL, Watts V (1976) Transient donor neutropenia induced by continuous-flow filtration leukapheresis. Clin Res 24: 539aGoogle Scholar
  26. 26.
    Packard BD, Weiler JM (1981) Methylprednisolone inhibits the amplification pathway of human complement. Transactions of the IXth International Complement WorkshopGoogle Scholar
  27. 27.
    Maroko PR, Carpenter CB, Chiariello M, Fishbein MC, Radvany P, Knostman JD, Hale SL (1978) Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest 52: 599–607Google Scholar
  28. 28.
    Chenoweth DE, Cheung AK, Henderson LW (1983) Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Intern 24: 764–769CrossRefGoogle Scholar
  29. 29.
    Ivanovich P, Chenoweth DE, Schmidt R, Klinkmann H, Boxer LA, Jacob HS, Hammerschmidt DE (1983) Symptoms and activation of granulocytes and complement with two dialysis membranes. Kidney Intern 24: 758–763CrossRefGoogle Scholar
  30. 30.
    Hammerschmidt DE (1986) Clinical utility of assays for complement anaphylatoxins. Complement (in press).Google Scholar
  31. 31.
    Gerdin B, Belew M, Lindquist O, Saldeen T (1981) Effect of a fibrin-derived peptide on pulmonary microvascular permeability. In: Saldeen T (ed) The Microembolism Syndrome Almqvist and Wiskell, Stockholm, pp 233–239Google Scholar
  32. 32.
    O’Flaherty JT, Craddock PR, Jacob HS (1977) Mechanism of anticomplementary activity of corticosteroids in vivo: possible relevance to endotoxin shock. Proc Soc Exp Biol Med 154: 206–209PubMedGoogle Scholar
  33. 33.
    Hammerschmidt DE, White JG, Craddock PR, Jacob HS (1979) Corticosteroids inhibit complement-mediated granulocyte aggregation: a possible mechanism for their efficacy in shock states. J Clin Invest 63: 798–803PubMedCrossRefGoogle Scholar
  34. 34.
    Hammerschmidt DE, Knabe AC, Silberstein PT, Lamche HR, Jacob HS. Inhibition of granulocyte function by steroids is not limited to corticoids: studies with sex steroids (Submitted for publication)Google Scholar
  35. 35.
    Silberstein PT, Lamche HR, Knabe AC, Thomas D, Jacob HS, Hammerschmidt DE (1984) High-dose steroids decrease granulocyte membrane fluidity, disrupting agonist receptor function: studies with spin resonance. Blood 64 (Suppl. 1): 72aGoogle Scholar
  36. 36.
    Imai T, Sakuraya M, Fujita T (1977) [Effects of estrogen on endotoxin shock] [author’s translation of title]. Jap Circ J 41: 609–614Google Scholar
  37. 37.
    Lefer AM, Polansky EW (1979) Beneficial effects of ibuprofen in acute myocardial ischemia. Cardiology 64: 265–279PubMedCrossRefGoogle Scholar
  38. 38.
    Flynn PJ, Becker WK, Vercellotti GM, Weisdorf DJ, Craddock PR, Hammerschmidt DE, Lillehei RC, Jacob HS (1984) Ibuprofen inhibits granulocyte responses to inflammatory mediators: a proposed mechanism for reduction of experimental myocardial infarct size. Inflammation 8: 33–44PubMedCrossRefGoogle Scholar
  39. 39.
    Hammerschmidt DE, Flynn PJ, Coppo PA, Skubitz KM, Jacob HS (1982) Synergy among agents inhibiting granulocyte aggregtion. Inflammation 6: 169–176PubMedCrossRefGoogle Scholar
  40. 40.
    Anonymous, from the Chinese Academy of Medical Sciences and Beijing Friendship Hospital (1975) Changes in nail-fold microcirculation and amines in diseases manifesting acute microcirculatory disturbance. Chin Med J 1: 216–224Google Scholar
  41. 41.
    Xiu RJ, Hammerschmidt DE, Coppo PA, Jacob HS (1982) Anisodamine inhibits thromboxane synthesis, granulocyte aggregation and platelet aggregation: a possible mechanism for its efficacy in bacteremic shock. JAMA 247: 1458–1460.PubMedCrossRefGoogle Scholar
  42. 42.
    Su J, Hock CE, Lefer AM (1984) Beneficial effect of anisodamine in hemorrhagic shock. Naunyn Schmiedebergs Arch Pharmacol 325: 360–365PubMedCrossRefGoogle Scholar
  43. 43.
    Watson KV, Moldow CF, Ogburn P, Jacob HS (1984) MgSO4 promotes the release of prostacyclin (PGI2) by endothelial cells: a rationale for its use in pre-eclampsia. Clin Res 32: 341aGoogle Scholar
  44. 44.
    Haber F, Weiss J (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Sect A Biol 147: 332–351CrossRefGoogle Scholar
  45. 45.
    Ward PA, Till GO, Kankel R, Beauchamp E (1983) Evidence for a role of OH radical in a complement-and-neutrophil-dependent tissue injury. J Clin Invest 1983; 72: 789–795.CrossRefGoogle Scholar
  46. 46.
    Stroncek DF, Vercellotti GM, Huh PW, Jacob HS (1986) Neutrophil oxidants inactivate alpha-1-protease inhibitor and promote PMN-mediated detachment of cultured endothelium: protection by free methionine. Arteriosclerosis In PressGoogle Scholar
  47. 47.
    Neue Aspekte der Trasylol-Therapie: Die Schocklunge (1973) ( GL Haberland and DH Lewis, eds) Schattauer, StuttgartGoogle Scholar
  48. 48.
    Johnson D, Travis J (1979) The oxidative inactivation of human alpha-l-proteinase inhibitor: further evidence of methionine at the reactive center. J Bioll Chem 254: 4022–4026Google Scholar
  49. 49.
    Perez HD, Weksler BB, Goldstein IM (1980) Generation of a chemotactic lipid from arachidonic acid exposure to a superoxide-generating system. Inflammation 4: 313–328PubMedCrossRefGoogle Scholar
  50. 50.
    Butler WJ, Bohn DJ, Bryan AC, Froese AB (1980) Ventilation by high-frequency oscillation in humans. Anaesth Analg 59: 577–584Google Scholar
  51. 51.
    Weigelt JA, Synder WH (III), Mitchell RA (1981) Early identification of patients prone to develop adult respiratory distress syndrome. Am J Surgery 142: 687–691.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • D. E. Hammerschmidt

There are no affiliations available

Personalised recommendations