Skip to main content

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 1))

  • 117 Accesses

Abstract

Mechanical ventilatory support is a routine event in intensive care units for patients with compromised cardiopulmonary function. Despite numerous papiers on the effects of PEEP on the circulatory system, until recently little attention has been focused on the “control” state of IPPV [1–7]. A physiologic approach to understanding the effects of PEEP can be derived by considering PEEP as simply IPPV at an increased lung volume during both a single respiratory cycle and steady state conditions. Unfortunately the physiologic variables which are affected by increased lung volume and pleural pressure may have diametrically opposing effects such that straight forward predictions may not be possible. The baseline conditions under which the ventilatory support is instituted may profoundly influence which factors will dominate. Even a question as simple as what effect an increase in pleural pressure will have on cardiac output is dependent on baseline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinsky MR (1984) Instantaneous venous return curves in an intact canine preparation. J Appl Physiol 56: 765–771

    PubMed  CAS  Google Scholar 

  2. Santamore WP, Bove AA, Heckmann JL (1984) Right and left ventricular pressure-volume response to positive end-expiratory pressure. Am J Physiol 246: H114–H119

    PubMed  CAS  Google Scholar 

  3. Cassidy SS, Ramanthan M (1984) Dimensional analysis of the left ventricle during PEEP: Relative septal and lateral wall displacements. Am J Physiol 246: (Heart Circ Physiol 14) H792–H805

    PubMed  CAS  Google Scholar 

  4. Pinsky MR (1984) Determinants of pulmonary arterial flow variation during respiratory. Cycle J Appt Physiol 56: 1237–1245

    CAS  Google Scholar 

  5. Robotham JL, Cherry D, Mitzner W, Rabson JL, Lixfeld W, Bromberger-Barnea B (1983) A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation. Crit Care Med 11: 783–793

    Article  PubMed  CAS  Google Scholar 

  6. Morgan BC, Martin WE, Hornberger JF, Crawford EW, Guntheroth WG (1966) Hemodynamic effects of intermittent positive pressure respiration. Anesthesiology 27: 584–590

    Article  PubMed  CAS  Google Scholar 

  7. Morgan BC, Crawford EW, Guntheroth WG (1969) The hemodynamic effects of changes in blood volume during intermittent positive-pressure ventilation. Anesthesiology 30: 297–305

    Article  PubMed  CAS  Google Scholar 

  8. Charlier AA, Jaumin PM, Pouleur H (1974) Circulatory effects of deep inspirations, blocked expirations and positive pressure infaltions at equal transpulmonary pressures in conscious dogs. J Physiol (Lond) 241: 589–605

    CAS  Google Scholar 

  9. Scharf SM, Brown R, Saunders N, Green LH (1980) Hemodynamic efects of positive-pressure inflation. J Appl Physiol 49: 124–131

    PubMed  CAS  Google Scholar 

  10. Parisi AF, Harrington JJ, Askenazi J, Pratt RC, McIntyre KM (1976) Echocardiographic evaluation of the Valsalva maneuver in healthy subjects and patients with and without heart failure. Circulation 54: 921–927

    Article  PubMed  CAS  Google Scholar 

  11. Brooker JZ, Alderman EL, Harrison DC (1974) Alterations in left ventricular volumes induced by Valsalva maneuver. Br Heart J 36: 713–718

    Article  PubMed  CAS  Google Scholar 

  12. Korner PI, Tonkin AM, Uther JB (1976) Reflex and mechanical circulatory effects of graded Valsalva maneuvers in normal man. J Appl Physiol 40: 434–440

    PubMed  CAS  Google Scholar 

  13. Hamilton WF, Woodb ury RA, Harper HT (1936) Physiologic relationships between intra-thoracic, intraspinal and arterial pressures. JAMA 107: 853–856

    Article  Google Scholar 

  14. Morgan BC, Crawford EW, Winterscheid LC, Gunther WG (1968) Circulatory effects of intermittent positive pressure ventilation. NW Med 67: 149–152

    CAS  Google Scholar 

  15. Lewis T (1908) Studies of the relationshipbetween respiration and blood pressure. J Physiol 37: 233–255

    PubMed  CAS  Google Scholar 

  16. Little WC, Barr WK, Crawford MH (1985) Altered effect of the Valsalva maneuver on left ventricular volume in patients with cardiomyopathy. Circulation 71: 227–233

    Article  PubMed  CAS  Google Scholar 

  17. Can DT, Essex HE (1946) Certain effects of positive pressure respiration on the circulatory and respiratory systems. Am Heart J 31: 53–73

    Article  Google Scholar 

  18. Whittenberger JL, McGregor M, Berglund E, Borst HG (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15: 878–882

    PubMed  CAS  Google Scholar 

  19. Dhainaut JF (1985) Presented at Symposium on the Right Ventricle, Paris, France

    Google Scholar 

  20. Brower R, Wise RA, Hassapoyannes C, Bromberger-Barnea B, Permutt S (1985) Effect of lung inflation on lung blood volume and pulmonary venous flow. J Appl Physiol 58: 954–963

    Article  PubMed  CAS  Google Scholar 

  21. Robotham JL, Scharf S (1983) Effects of positive and negative pressure ventilation on cardiac performance. Clin Chest Med 4: 161–87

    PubMed  CAS  Google Scholar 

  22. Criley JM, Balfuss AH, Vissel GL (1976) Cough-induced cardiac compression: Self-administered form of cardiopulmonary resuscitation. JAMA 236: 1246–1250

    Google Scholar 

  23. Beach T, Millen E, Grenvik A (1973) Hemodynamic response to discontinuance of mechanical ventilation. Crit Care Med 1: 85–90

    Article  PubMed  CAS  Google Scholar 

  24. Grace MP, Greenbaum DM (1982) Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med 10: 358–360

    Article  PubMed  CAS  Google Scholar 

  25. Mathru M, Rao TLK, El-Etr AA, Pifarre R (1982) Hemodynamic response to changes in ventilatory patterns in patients with normal and poor left ventricular reserve. Crit Care Med 10: 423–426

    Article  PubMed  CAS  Google Scholar 

  26. Pinsky MR, Summer WR, Wise RA, Permutt S, Bromberger-Barnea B (1983) Augmentation of cardiac function by elevation of intrathoracic pressure. J Appl Physiol 54: 950–955

    PubMed  CAS  Google Scholar 

  27. Robotham JL, Lixfeld W, Holland L, MacGregor D, Bromberger-Barnea B, Permutt S, Rabson JL (1980) The effects of positive end-expiratory pressure on right and left ventricular performance. Am Rev Respir Dis 121: 677–683

    PubMed  CAS  Google Scholar 

  28. Cassidy SS, Eschenbacher WL, Robertson CH, Nixon JV, Blomquist G, Johnson RL Jr Intermittent Positive Pressure Ventilation and PEEP 95 (1979) Cardiovascular effects of positive-pressure ventilation in normal subjects. J Appl Physiol 47: 453–461

    PubMed  CAS  Google Scholar 

  29. Cassidy SS, Robertson CH, Pierce AK, Johnson RL Jr (1978) Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol 44: 743–750

    PubMed  CAS  Google Scholar 

  30. Culver B, Marini J, Butler J (1981) Lung volume and pleural pressure effects on ventricular function. J Appl Physiol 50: 630–635

    PubMed  CAS  Google Scholar 

  31. Grindlinger GA, Manny J, Justice R, Dunham B, Shepro D, Hechtman HB (1979) Presence of negative inotropic agents in canine plasma during PEEP. Circ Res 45: 460–467

    Article  PubMed  CAS  Google Scholar 

  32. Prewitt RM, Wood LDH (1979) Effect of positive end-expiratory pressure on ventricular function in dogs. J Appl Physiol 236: H534–H544

    CAS  Google Scholar 

  33. Scharf SM, Caldini P, Ingram RH (1977) Cardiovascular effects of increasing airway pressure in the dog. Am J Physiol (Heart Circ Physiol) 1: H35–H43

    Google Scholar 

  34. Wise RA, Robotham JL, Bromberger-Barnea B, Permutt S (1981) Effect of PEEP on left ventricular function in right-heart-bypassed dogs. J Appl Physiol 51: 541–546

    PubMed  CAS  Google Scholar 

  35. Culver B, Marini J, Bulter J (1981) Lung volume and pleural pressure effect on ventricular function. J Appl Physiol 50: 630–635

    PubMed  CAS  Google Scholar 

  36. Manny J, Patten MT, Liebman PR, Hechtman HB (1978) The association of lung distention, PEEP and biventricular failure. Ann Surg 187: 151–157

    Google Scholar 

  37. Scharf SM, Brown R (1982) Influence of the right ventricle on left ventricular function with PEEP. J Appl Physiol 52: 254–259

    PubMed  CAS  Google Scholar 

  38. Cassidy SS (1984) Stimulus-response curves of the lung inflation cardiodepressor reflex. Resp Physiol 57: 259–68

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Robotham, J.L. (1986). Intermittent Positive Pressure Ventilation and PEEP. In: Vincent, J.L. (eds) 6th International Symposium on Intensive Care and Emergency Medicine. Update in Intensive Care and Emergency Medicine, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82801-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82801-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16508-8

  • Online ISBN: 978-3-642-82801-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics