Skip to main content

Abstract

Modelling laws permit the transfer of information obtained from model tests to the full-scale component, which may differ from the model in terms of size, material, physical characteristics or boundary conditions. For a long time, model tests were a decisive aid to the engineer when designing complex structures and machines, particularly for aircraft and ships. The development of modern computer technology and computer simulation has reduced the importance of the model technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Chapter 3

  1. Weber M., Das allgemeine Ähnlichkeitsprinzip in der Physik und sein Zusammenhang mit der Dimensionslehre und der Modelwissenschaft. Jahrb. Schiffbautechn. Ges. (1930) 274–388.

    Google Scholar 

  2. Görtlar H., Dimensionsanalyse, Springer, Berlin (1975).

    Book  Google Scholar 

  3. Katanek S., Grögner R., Bode C., Ahnlichkeitstheorie, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig (1967).

    Google Scholar 

  4. Pawelski O., Beitrag zur Ahnlichkeitstheorie der Umformtechnik, Arch. f. d. Eisenhüttenwesen 35 (1964) 27–36.

    Google Scholar 

  5. Kast D., Modellgesetzmässigkeiten beim Rückwärtzsfliesspressen geometrisch ähnlicher Näpfe. Ber. a. d. Inst. f. Umformtechnik, Univ. Stuttgart, W. Girardet, Essen, Nr. 13 (1969).

    Google Scholar 

  6. Danckert J., Modelmaterialeteknik, AMT - Publikation 78. 13 A, Danmarks tekniske Höjskole, Lyngby, Denmark (1977).

    Google Scholar 

  7. Tresca H., Sur l’écoulement des corps solides soumis â de fortes pressions. C.R. Acad. Sci. Paris 59 (1864 II) 754.

    Google Scholar 

  8. V. Obermayer A., Versuche über den Ausfluss plastischen Tons. S.-B. A.ad. Wiss. Wien 58 (1868) 737.

    Google Scholar 

  9. Wanheim T., Maegaard V., Danckert J., The Physical Modelling of Plastic Working Processes, Proceedings of the First International Conference on Technology of Plasticity, Tokyo, Vol. II (1984) 984–997.

    Google Scholar 

  10. Wanheim T., Schreiber M.P., Grönbaek J., Danckert J., Physical Modelling of Metal Forming Processes, Materials and Processing Congresses 1978–1979, American Society for Metals, Metals Park, Ohio (1980) 145–166.

    Google Scholar 

  11. Engelbert T., Side Extrusion of Tube, Ph.D. Thesis, Royal Institute of Technology, Department of Metal Working, Stockholm, Sweden (1980).

    Google Scholar 

  12. Andrén G., Götvalsningens betydelse för uppkomst av hörnsprickor, Ph.D. Thesis, Royal Institut of Technology, Department of Metal Working, Stockholm, Sweden (1980).

    Google Scholar 

  13. Wallerö A., SIMON-Simulering med modellmaterialier i Norden, Copenhagen, Denmark, Nordforsk (Sept. 1983) 34–35.

    Google Scholar 

  14. Ono S., Tanaka M., Tsukada H., Iwadate T., Analysis of Distribution of Deformation during Hot Forging, Proceedings of the First International Conference on Technology of Plasticity, Tokyo, Vol. II (1984) 997–1003.

    Google Scholar 

  15. Altan T., Henning H.J., Sabroff A.M., Use of Model Materials in Predicting Forming Loads in Metal Working, J. Eng. Ind.–Trans. ASME (May 1970) 444–452.

    Google Scholar 

  16. Shida S., Awazuhara H., Yasada K., Tsu-mura S., Simulation of Hot Rolling of Steel Using Lead, Trans. Iron Steel Inst. Japan, 19 (1979) 700–705.

    Google Scholar 

  17. Tsukamoto H., Taura Y., Ibushi J., Simulation of Hot Steel in Plastic Working with Plasticine and Lead, Proceedings of the First International Conference on Technology of Plasticity, Tokyo, Vol. II (1984) 1003–1009.

    Google Scholar 

  18. Corti C.W., Gessinger G.H., Shabaik A.H., Superplastic Isothermal Forging: A Model Metal Flow Study, J. Mech. Working Techn., 1 (1977) 35–51.

    Article  Google Scholar 

  19. Bodsworth C, Halling J., Barton J.W., The Use of Paraffin Wax as a Model Material to Simulate the Plastic Deformation of Metals, Part I–A Preliminary Investigation into the Mechanical Properties of Paraffin Wax, J. of the Iron and Steel Institute (March 1957) 375–383.

    Google Scholar 

  20. Lee R.S., Blazynski T.Z., Mechanical Properties of a Composite Wax Model Material Simulating Plastic Flow of Metals, Journal of Mechanical Working Technology, 9 (1984) 301–312.

    Article  Google Scholar 

  21. Danckert J., Wanheim T., Slipline Wax, Experimental Mechanics (August 1976) 318–320.

    Google Scholar 

  22. Green A.P., The Use of Plasticine Models to Simulate the Plastic Flow of Metals, Philosophical Magazine, 42, No. 327 (1951) 365–373.

    Google Scholar 

  23. Wanheim T., Danckert J., Johansen E., Anwendung der Modelltechnik bei Massivumformvorgängen, Industrie-Anzeiger Nr. 70 (1977).

    Google Scholar 

  24. Wanheim T., Schreiber M.P., Grönbaek J., Danckert J., Physical Modelling of Metal Forming Processes, J. Appl. Metalwork., Vol. 1, Nr. 3–5, (1980) 5–14.

    CAS  Google Scholar 

  25. SIMON-Simulering med modellmaterialier i Norden, Copenhagen, Denmark, Nordforsk (Sept. 1983).

    Google Scholar 

  26. Wanheim T., Simulation with Model Materials in the Nordic Countries, Symposium “Fundamentals of Metal Forming Technique”, Oct. 1983, Institut für Umformtechnik, University of Stuttgart (1983).

    Google Scholar 

  27. Danckert J., and Wanheim T., The Friction Shear Stress Distribution at the Material-Tool Interface, when Upsetting a Flat Circular Cylinder between Flat Parallel Plates, 1979 ASM Materials and Processing Congress, Chicago (1979) 429–447.

    Google Scholar 

  28. Kuske A., Schmidt O., Entwicklung eines spannungsoptischen Modellverfahrens zur Festigkeitsermittlung von Umformwerkzeugen (z.B. Strangpressmatrizen) under Verwendung eines plastischen, spannungsoptisch aktiven Modellumformgutes, Fortschr.-Ber. VDI-Z., Reihe 2, Nr. 43 (1980).

    Google Scholar 

  29. Jounio S., Kivivuori S., Nieminen M., Pihalainen H., SIMON-Simulering med modellmaterialier i Norden, Copenhagen, Denmark, Nordforsk (Sept. 1983) 27–29.

    Google Scholar 

  30. Tsukamoto H., Egawa T., Ibushi J., Oomori S., Yagishita K., Simulative Model Test on Metal Forming using Plasticine as a Model Material, SME Technical Paper, Dearborn, Mich. (1974).

    Google Scholar 

  31. Barlow K.N., Lancaster P.R., Investigation of Internal Flow Occurring During a Square-Diamond Rolling Pass, Using Plasticine as a Model Material, Met. Technol., 11 (1976) 503–509.

    Google Scholar 

  32. Ikushima H.,Hirasawa T., Nakauchi I., Settai Y., Yamagishi, Y., Plasticine Model Tests to Determine Effects of Rolling and Ingot Geometry Variables on Bottom Crop Losses of Slab Ingots, Ironmaking Steelmaking, 3 (1977) 176–180.

    Google Scholar 

  33. Isuda O., A Comprehensive Approach to Minimizing Crop Loss in Slabbing, International Conference on Steel Rolling, 29 Sept.–4 Oct., 1980, Vol. I, Science and Technology of Flat Rolled Products, Tokyo, Japan (1980) 169–180.

    Google Scholar 

  34. Stâhlberg U., Söderberg B.-O., Wallerö A., Overlap at the Back and Front End in Slab Ingot Rolling, Int. J. Mech. Sci., Vol. 23 (1981) 243–252.

    Article  Google Scholar 

  35. ] Private communication, BHP Research Laboratories, Melbourne, Australia.

    Google Scholar 

  36. Nilsson T., Stâhlberg U., Reduction of the Discard Formed in Piercing, Scand. J. Metall., 9 (1980) 41–45.

    Google Scholar 

  37. Rebelo N., Rydstad H., Schröder G., Simulation of Material Flow in Closed-Die Forging by Model Techniques and Rigid-Plastic FEM, in Numerical Methods in Industrial Forming Processes, edited by J.F.T. Pittman, R.D. Wood, J.M. Alexander and O.C. Zienkiewicz, Pineridge Press, Swansea, U.K. (1982) 237–246.

    Google Scholar 

  38. Danckert J., Wanheim T., The Use of a Square Grid as an Alternative to a Circular Grid in the Determination of Strains, Journal of Mechanical Working Technology, 3 (1979) 5–15.

    Article  Google Scholar 

  39. Bredendick F., Methoden der Deformationsmittlung an verzerrten Gittern, Wissenschaftliche Zeitschrift der Technischen Universität Dresden (1969) Heft 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Böer, C.R., Rebelo, N.M.R.S., Rydstad, H.A.B., Schröder, G. (1986). Physical Modelling. In: Process Modelling of Metal Forming and Thermomechanical Treatment. MRE Materials Research and Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82788-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82788-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82790-7

  • Online ISBN: 978-3-642-82788-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics