Cohomology and Analysis

  • Birger Iversen
Part of the Universitext book series (UTX)


In this section we shall prove that sheaf cohomology with constant coefficient is a homotopy invariant of the space. Recall that continuous maps f,g: X → Y are said to be homotopic if there exists a continuous map F: X × [0,1] → Y with
$$ F(x,0) = f(x),F(x,1) = g(x)\;;\;x \in X $$


Exact Sequence Open Subset Topological Space Compact Space Monodromy Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Birger Iversen
    • 1
  1. 1.Mathematisk InstitutAarhus UniversitetAarhus CDenmark

Personalised recommendations