Skip to main content

Analysis of Large Plastic Deformations in Shell Structures

  • Conference paper
Inelastic Behaviour of Plates and Shells

Summary

Four specific problems of large plastic deformation in shell structures are analysed and discussed. They are:- inversion of a spherical shell; formation of “flaps” in long-running ductile fracture of a high-pressure pipeline; inversion of a tube; and propagating collapse of a confined tube under external pressure. All of these examples involve travelling plastic hinges; and indeed such hinges seem to be a recurrent feature of large plastic deformations of shells. Two different kinds of travelling hinge are encountered, and analysed in simple ways. The first is a sort of rolling crease, while the second is almost purely extensional in character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hill, R.: The Mathematical Theory of Plasticity. Oxford: Clarendon Press 1950.

    MATH  Google Scholar 

  2. Onat, E.T.: The influence of geometry changes on the load-deformation behaviour of plastic solids. In Plasticity (Proceedings of Second Symposium on Naval Structural Mechanics), ed. Lee, E.H.; Symonds, P.S., pp 225–238. Oxford: Pergamon Press 1960.

    Google Scholar 

  3. Pugsley, Sir Alfred; Macaulay, M.: The large-scale crumpling of thin cylindrical columns. Quarterly Journal of Mechanics and Applied Mathematics 13 (1960) 1–9.

    Article  MathSciNet  Google Scholar 

  4. Alexander, J.M.: An approximate analysis of the collapse of thin cylindrical shells under axial loading. Quarterly Journal of Mechanics and Applied Mathematics 13 (1960) 10–15.

    Article  MATH  MathSciNet  Google Scholar 

  5. Wierzbicki, T.: Crushing behaviour of plate intersections. In Structural Crashworthiness, ed. Jones, N.; Wierzbicki, T., pp 66–95. London: Butterworths 1983.

    Google Scholar 

  6. Wierzbicki, T.; Abramowicz, W.: On the crushing mechanics of thin-walled structures. Journal of Applied Mechanics, 50 (1983) 722–734.

    Article  Google Scholar 

  7. Calladine, C.R.: Theory of shell structures. Cambridge University Press 1983.

    Book  MATH  Google Scholar 

  8. Onat, E.T.: The plastic collapse of cylindrical shells under axially symmetrical loading. Quarterly of Applied Mathematics 13 (1955) 63–72.

    MATH  MathSciNet  Google Scholar 

  9. Demir, H.H.; Drucker, D.C.: An experimental study of cylindrical shells under ring loading. In Progress in Applied Mechanics (the Prager Anniversary Volume) pp 205–220. New York: Macmillan 1963.

    Google Scholar 

  10. Wasti, S.T.: Finite deformation of spherical shells. Ph.D. dissertation, University of Cambridge 1964.

    Google Scholar 

  11. Leckie, F.A.; Penny, R.K.: Plastic instability of a spherical shell. In Engineering Plasticity, ed. Heyman, J.; Leckie, F.A., pp 401–411. Cambridge University Press 1968.

    Google Scholar 

  12. Morris, A.J.; Calladine, C. R.: The local strength of a thin spherical shell loaded radially through a rigid boss. In Pressure Vessel Technology (Proceedings of the First International Conference on Pressure Vessel Technology), vol. I., ed. Berman, I., pp 35–44. New York: American Society of Mechanical Engineers 1969.

    Google Scholar 

  13. Updike, D.P.: On the large deformation of a rigid-plastic spherical shell compressed by a rigid plate. Journal of Engineering for Industry (Trans. A.S.M.E. (B)) 94 (1972) 949–955.

    Article  Google Scholar 

  14. de Oliveira, J.G.; Wierzbicki, T.: Crushing analysis of rotationally symmetric plastic shells. Journal of Strain Analysis 17 (1982) 229–236.

    Article  Google Scholar 

  15. Calladine, C.R.: Simple ideas in the large-deflection plastic theory of plates and slabs. In Engineering Plasticity, ed. Heyman, J., Leckie, F.A., pp 93–127. Cambridge University Press 1968.

    Google Scholar 

  16. Poynton, W.A.; Shannon, R.W.E.; Fearnehough, G.D.: The design and application of shear fracture propagation studies. Journal of Engineering Materials and Technology (Trans. A.S.M.E. (H)) 96 (1974) 323–329.

    Article  Google Scholar 

  17. Popelar, C; Rosenfield, A.R.; Kanninen, M.F.: Steady-state crack propagation in pressurised pipelines. Journal of Pressure Vessel Technology (Trans. A.S.M.E. (J)) 99 (1977) 112–121.

    Article  Google Scholar 

  18. Johnson, W; Reid, S.R.: Metallic energy dissipating systems. Applied Mechanics Reviews 31 (1978) 277–288.

    Google Scholar 

  19. Thornton, P.H.; Mahmood, H.F.; Magee, C.L.: Energy absorption by structural collapse. In Structural Crashworthiness, ed. Jones, N; Wierzbicki, T., pp 96–117. London: Butterworths 1983.

    Google Scholar 

  20. Guist, L.R.; Marble, D.P.; Prediction of the inversion of a circular tube. Technical Note TN-D-3622. Washington: National Aeronautics and Space Administration 1966.

    Google Scholar 

  21. Al-Hassani, S.T.S.; Johnson, W.; Lowe, W.T.: Characteristics of inversion tubes under axial loading. Journal of Mechanical Engineering Science 14 (1972) 370–381.

    Article  Google Scholar 

  22. Kinkead, A.N.: Analysis for inversion load and energy absorption of a circular tube. Journal of Strain Analysis 18 (1983) 177–188.

    Article  Google Scholar 

  23. Calladine, C.R.: Plasticity for Engineers, (2nd edition of Engineering Plasticity). Chichester: Ellis Horwood 1985.

    Google Scholar 

  24. Palmer, A.C.; Martin, J.H.: Buckle propagation in submarine pipelines. Nature 254 (1974) 46–48.

    Article  Google Scholar 

  25. Kyriakides, S.; Babcock, C.D.: Buckle propagation phenomena in pipelines. In Collapse, ed. Thompson, J.M.T.; Hunt, G.W., pp 75–91. Cambridge University Press. 1983.

    Google Scholar 

  26. Steel, W.J.M.; Spence, J.: On propagating buckles and their arrest in sub-sea pipelines. Proceedings of Institution of Mechanical Engineers 194A (1983) 139–147.

    Article  Google Scholar 

  27. Wierzbicki, T.; Bhat, S.U.: On the initiation and propagation of buckles in pipelines. M.I.T., Dept of Ocean Engineering, Report No. 85–2 (1985).

    Google Scholar 

  28. Croll, J.G.A.: Analysis of buckle propagation in marine pipelines. Journal of Constructional Steel Research (in press).

    Google Scholar 

  29. Reid, S.R.; Reddy, T.Y.: Effects of strain hardening on the lateral compression of tubes between rigid plates. International Journal of Solids and Structures 14 (1978) 213–225.

    Article  Google Scholar 

  30. Perrone, N.; Bhadra, P.A.: A simplified method to account for plastic rate sensitivity with large deformations. Journal of Applied Mechanics, A.S.M.E., 46 (1979) 811–816.

    Article  Google Scholar 

  31. Reid, S.R.: Laterally compressed metal tubes as impact energy absorbers. In Structural Crashworthiness, ed. Jones, N; Wierzbicki, T.f pp 1–43. London: Butterworths 1983.

    Google Scholar 

  32. Calladine, C.R. English, R.W.: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. International Journal of Mechanical Sciences 26 (1984) 689–701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer, Berlin Heidelberg

About this paper

Cite this paper

Calladine, C.R. (1986). Analysis of Large Plastic Deformations in Shell Structures. In: Bevilacqua, L., Feijóo, R., Valid, R. (eds) Inelastic Behaviour of Plates and Shells. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82776-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82776-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82778-5

  • Online ISBN: 978-3-642-82776-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics