On a Nonlocal Biaxial Strength Criterion for Concrete and its Application to Ultimate Load Analysis of RC Shells by the FEM

  • H. A. Mang
  • J. Eberhardsteiner
  • H. Walter
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

A change of the mechanical state of a point of a body such as the transition of the material from the elastic to the plastic state or the initiation of a crack usually also depends on the mechanical states of points in the neighborhood of the considered point. This is referred to as a “nonlocal dependence”. As a first approximation of this imprecise notion, the dependence of the change of the mechanical state of the point on the spatial gradients of local strains and stresses may be determined. The aim of this paper is to report on a nonlocal biaxial strength criterion for concrete and on its application to ultimate load analysis of reinforced concrete (RC) shells by the finite element method (FEM). It is based on the assumption that the biaxial strength of concrete increases with increasing gradient of the strain energy density in the considered point of the shell. In the numerical study it is shown that the influence of the nonlocal character of the proposed biaxial strength criterion on the global response of two different RC shells is rather small.

Keywords

Brittleness Borated Dition Crushing Terion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campus, F.: Plastification de l’acier doux en flexion plane simple. Bull, de la Classe des Sciences, Serie 5, 49 (1963).Google Scholar
  2. 2.
    Campus, F.: Plastification de l’acier doux en flexion composee. Bull, de la Classe des Sciences, Serie 5, 49 (1963).Google Scholar
  3. 3.
    Campus, F.: La plastification de l’acier doux en flexion simple et composee et ses effets sur flambage par compression des pieces droites elastoplastiques. Bull, de la Classe de Sciences, Serie 5, 49 (1963).Google Scholar
  4. 4.
    Konig, J.A.; Olszak, W.: The yield criterion in the general case of nonhomogeneous stress and deformation fields. Topics in Applied Continuum Mechanics (Zeman, J.L.; Ziegler, F.: Eds.) Wien: Springer 1974.Google Scholar
  5. 5.
    Hellmann, H.G.: Beziehungen zwischen Zugund Druckfestigkeit des Betons. beton 19 (1969) 68–70.Google Scholar
  6. 6.
    Mayer, H.: Die Berechnung der Durchbiegung von Stahlbetonbauteilen. Deutscher AusschuB für Stahlbeton, Vol. 194, Berlin: Wilhelm Ernst 1967.Google Scholar
  7. 7.
    Kupfer, H.: Das Verhalten des Betons unter mehrachsiger Kurzzeitbelastung unter besonderer Beriicksichtigung der zweiachsigen Beanspruchung. Deutscher AusschuB für Stahlbeton, Vol. 229, Berlin: Wilhelm Ernst 1973.Google Scholar
  8. 8.
    Bažant, Z.P.; Cedolin, L.: Blunt crack band propagation in finite element analysis. Journal of the Engineering Mechanics Division, ASCE, 105 (1979) 297–315.Google Scholar
  9. 9.
    Bažant, Z.P. ; Cedolin, L.: Fracture mechanics of reinforced concrete. Journal of the Engineering Mechanics Division, ASCE, 106 (1980) 1287–1306.Google Scholar
  10. 10.
    Bažant, Z.P.; Cedolin, L.: Finite element modelling of crack band propagation. Journal of Structural Engineering, ASCE, 109 (1983) 69–72.CrossRefGoogle Scholar
  11. 11.
    Bažant, Z.P.: Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics, ASCE, 110 (1984) 518–535.CrossRefGoogle Scholar
  12. 12.
    Mang, H.A.; Eberhardsteiner, J.: Collapse analysis of thin RC shells on the basis of a new fracture criterion. Proceedings of the US-Japan Seminar on Finite Element Analysis of Reinforced Goncrete Structures, Japan Concrete Institute, Tokyo, 1985.Google Scholar
  13. 13.
    Floegl, H.: Traglastermittlung dünner Stahlbetonschalen mittels der Methods der Finiten Elemente unter Berücksichtigung wirklichkeitsnahen Werkstof fverhaltens sowie geometrischer Nichtlinerität, Dissertation, Technische Universitat Wien, Wien, 1981.Google Scholar
  14. 14.
    Koiter, W.T.: General equations of elastic stability for thin shells. Proceedings of the Symposium on the Theory of Shells to Honor Lloyd Hamilton Donnell. University of Houston, Houston, 1967.Google Scholar
  15. 15.
    Liu, T.C.A.; Nilson, A.H.; Slate, F.O.: Biaxial stress-strain relations for concrete. Journal of the Structural Division, ASCE, 98 (1972) 1025–1034.Google Scholar
  16. 16.
    Thomas, G.R.; Gallagher, R.H.: A triangular thin shell finite element: linear analysis. NASA Contractor Report 2482, Washington D.C., 1975.Google Scholar
  17. 17.
    Mang, H.A.; Trappel, F.: Physically linear buckling analysis of reinforced concrete cooling towsrs: design necessity or academic exercise? Proceedings of the 2nd International Symposium on Natural Draught Cooling Towers. Springer, Berlin, 1984.Google Scholar
  18. 18.
    Mehl, M.: über das Tragverhalten von Naturzugkühltürmen aus Stahlbeton, Dissertation, Technische Universität Wien, Wien, 1982.Google Scholar
  19. 19.
    Krätzig, W.P.; Peters, H.L.; Zerna, W.: NaturzugkiiMturme aus Stahlbeton-Derzeitiger Stand und Entwicklungsmoglichkeiten. Be tonund Stahlbetonbau, 73 (1978) 37–42.Google Scholar
  20. 20.
    Dodds, R.H.; Darwin, D.; Leibengood, L.O.: Stress controlled smeared cracking in RC beams. Journal of Structural Engineering, ASCE, 110 (1984) 1959–1976.CrossRefGoogle Scholar
  21. 21.
    Schaper, G.: Comparative linear and nonlinear analysis of hyperbolic paraboloid groined vaults. Report No. US-SESM 80–12, Dept. of Civil Engineering, University of California, Berkeley, California, 1980.Google Scholar
  22. 22.
    Mang, H.A. Eberhardsteiner, J.; Walter, H.: Development and application of a gradient-dependent fracture criterion for finite-element analysis of.reinforced-concrete surface structures. Proceedings of the Europe-US Symposium on Finite Element Methods for Nonlinear Problems. Trondheim, 1985, in press.Google Scholar
  23. 23.
    Eberhardsteiner, J.; Mang, H.: Discrete orthogonalization of parameter lines on curved surfaces for finite element analysis of thin shells. International Journal for Numerical Methods in Engineering, 21 (1985) 837–851.CrossRefMATHGoogle Scholar

Copyright information

© Springer, Berlin Heidelberg 1986

Authors and Affiliations

  • H. A. Mang
    • 1
  • J. Eberhardsteiner
    • 1
  • H. Walter
    • 1
  1. 1.Institute of Strength of MaterialsTechnical University of ViennaViennaAustria

Personalised recommendations