Skip to main content

Optimization of Cylindrical Shells Under Combined Loading Against Brittle Creep Rupture

  • Conference paper
Inelastic Behaviour of Plates and Shells

Summary

Optimal structural design of cylindrical shells under overall bending, torsion, tension and internal pressure in creep conditions is considered. The material is assumed to be governed by the Norton-Odqvist nonlinear steady creep law. Minimal weight of the shell is the design objective, radius and wall thickness are design variables, and the constraint refers to brittle creep rupture as described by the Kachanov-Sdoburev hypothesis. Elimination of circumferential bending in the wall results in a circular profile. The condition of uniform creep strength determines the thickness distribution, whereas the optimal radius is determined numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Życzkowski, M., Krużelecki, J.: Optimal design of shells with respect to their stability, Proc. IUTAM Symp. Optimization in Structural Design, ed. by A. Sawczuk and Z. Mróz, Springer 1975, 229–247.

    Google Scholar 

  2. Krużelecki, J.: Optimization of shells under combined loadings via the concept of uniform stability, Optimization of Distributed Parameter Systems, ed, by E.J. Haug and J. Cea, Sijthoff and Noordhoff 1982, 929–950.

    Google Scholar 

  3. Krużelecki, J., Życzkowski, M.: Optimal design of an elastic cylindrical shell under overall bending with torsion. Solid Mech. Arch. 9 (1984), 269–306.

    Google Scholar 

  4. Reytman, M.I.: On the theory of optimal design of structures made of plastics with time effects taken into account (in Russian). Mekhanika Polimerov (1967), 2, 357–360.

    Google Scholar 

  5. Prager, W.: Optimal structural design for given stiffness in stationary creep. Z. Angew. Math. Physik 19 (1968), 252–256

    Article  MATH  Google Scholar 

  6. Nemirovsky, Y.V.: Optimal design of structures in creep conditions (in Russian). Trudy 3-go Vsesoy. Syezda po Teor. Prikl. Mekh. (1968), 225.

    Google Scholar 

  7. Życzkowski, M.: Optimal Structural design in rheology, 12th Int. Congr. Appl. Mech., Stanford 1968; J. Appl. Mech. 38 (1971), 39–46.

    Article  Google Scholar 

  8. Życzkowski, M.: Recent results on optimal design in creep conditions. Proc. Euromech. Coll. 164, Optimization Methods in Structural Design, ed. by H. Eschenauer and N. Olhoff Bibliographisches Institut 1983, 444–449.

    Google Scholar 

  9. Krużelecki, J., Życzkowski, M.: Optimal structural design of shells — a survey. Solid Mech. Arch. 10 (1985), 101–170.

    MATH  Google Scholar 

  10. Życzkowski, M., Rysz, M.: Optimal design of a thin-walled pipeline cross-section in creep conditions. Mechanics of Inelastic Media and Structures, ed. by O. Mahrenholtz and A. Sawczuk, PWN 1982, 329–339.

    Google Scholar 

  11. Rysz, M.: Optimal rib-reinforcement of a thin-walled pipeline with respect to creep rupture. J. Pipelines (1985), in print.

    Google Scholar 

  12. Życzkowski, M., Gajewski, A.: Optimal structural design under stability constraints. Proc. IUTAM Symp. Collapse — Buckling of Structures, ed. by J.M.T. Thompson and G.W. Hunt, Cambridge Univ. PRess 1983, 299–332.

    Google Scholar 

  13. Kachanov, L.M.: On the rupture time in creep conditions (in Russian). Izv. AN SSSR, Otd. Tekhn. Nauk (1958), 8, 26–31; (1960), 5, 88–92.

    Google Scholar 

  14. Sdobyrev, V.P.: A long-time strength criterion for certain alloys under combined stresses (in Russian). Izv. AN SSSR, Otd. Tekhn. Nauk (1959), 6, 93–99.

    Google Scholar 

  15. Leckie, F.A., Hayhurst, D.R.: Creep rupture of structures. Proc. Roy. Soc. A340 (1974), 323–347.

    Google Scholar 

  16. Swisterski, W., Wroblewski, A., Życzkowski, M.: Geometrically non-linear eccentrically compressed columns of uniform creep strength versus optimal columns. Int. J. Non-linear Mech. 18 (1983), 287–296.

    Article  MATH  Google Scholar 

  17. Wlassow, W.S.: Allgemeine Schalentheorie und ihre Anwendung in der Technik (tibersetzt aus dem Russischen). Akademie-Verlag, Berlin 1958.

    Google Scholar 

  18. Mrowiec, M.: Limit state of thin pipeline under combined internal pressure and bending moment. Bull. Acad. Pol., Ser. Sci. Techn. 15 (1967), 205–216.

    Google Scholar 

  19. Mrowiec, M., Życzkowski, M.: Limit interaction curves for thin-walled pipe-line under internal pressure and bending. Bull. Acad. Pol. Ser. Sci. Techn. 16 (1968), 451–460.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer, Berlin Heidelberg

About this paper

Cite this paper

Życzkowski, M., Rysz, M. (1986). Optimization of Cylindrical Shells Under Combined Loading Against Brittle Creep Rupture. In: Bevilacqua, L., Feijóo, R., Valid, R. (eds) Inelastic Behaviour of Plates and Shells. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82776-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82776-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82778-5

  • Online ISBN: 978-3-642-82776-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics