Transonic Separated Flow Prediction Based on a Mathematically Simple, Nonequilibrium Turbulence Closure Model

  • D. A. Johnson
  • L. S. King
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (MANUTECH)


A mathematically simple, turbulence closure model designed to treat transonic airfoil flows even with massive separation is described. Numerical solutions of the Reynolds-averaged, Navier-Stokes equations obtained with this closure model are shown to agree well with experiments over a broad range of test conditions.


Eddy Viscosity Closure Model Reynolds Shear Stress Adverse Pressure Gradient Turbulence Closure Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horstman, C.C.; Johnson, D.A.: Prediction of Transonic Separated Flow. AIAA Journal, vol. 22, no. 7 (July 1984) 1001–1003.0CrossRefADSGoogle Scholar
  2. 2.
    Cebeci, T.; Smith, A.M.O.: Analysis for Turbulent Boundary Layers. New York, Academic Press, 1974.Google Scholar
  3. 3.
    Jones, W.P.; Launder, B.E.: The Prediction of Laminarization with a Two-Equation Model of Turbulence, International Journal of Heat Transfer, vol. 15 (Feb. 1972) 301–314.CrossRefGoogle Scholar
  4. 4.
    Johnson, D.A.; King, L.S.: A New Turbulence Closure Model for Boundary Layer Flows with Strong Adverse Pressure Gradients and Separation, AIAA Paper 84-0175, Reno, Nev. (1984).Google Scholar
  5. 5.
    Johnson, D.A.: Predictions of Transonic Separated Flow with an Eddy-Viscosity/Reynolds-Shear-Stress Closure Model, AIAA Paper 85-1683, Cincinnati, Ohio (1985).Google Scholar
  6. 6.
    King, L.S.; Johnson, D.A.: Separated Transonic Airfoil Calculations with a Nonequilibrium Turbulence Model, NASA TM-86830, 1985.Google Scholar
  7. 7.
    Simpson, R.L.; Chew, Y.T.; Shivaprasad, B.G.: The Structure of a Separating Turbulent Boundary Layer. Part I. Mean Flow and Reynolds Stresses, Journal of Fluid Mechanics, vol. 113 (1981) 23–51.CrossRefADSGoogle Scholar
  8. 8.
    Bachalo, W.D.; Johnson, D.A.: An Investigation of Transonic Turbulent Boundary Layer Separation on an Axisymmetric Flow Model, AIAA Paper 79-1479, Williamsburg, Va. (1979).Google Scholar
  9. 9.
    MacCormack, R.W.: A Numerical Method for Solving the Equations of Compressible Viscous Flow. AIAA Journal, vol. 20 (Sept. 1982) 1275–1281.CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    Beam, R.; Warming, R.F.: An Implicit Factored Scheme for the Compressible Navier-Stokes Equations, Journal of Computational Physics, vol. 15 (1974) 299–319.CrossRefGoogle Scholar
  11. 11.
    Johnson, D.A.; Spaid, F.W.: Supercritical Airfoil Boundary-Layer and Near-Wake Measurements, Journal of Aircraft, vol. 20 (Apr. 1983) 298–305.CrossRefGoogle Scholar
  12. 12.
    Johnson, D.A.; Bachalo, W.D.: Transonic Flow Past a Symmetrical Airfoil—Inviscid and Turbulent Flow Properties, AIAA Journal, vol. 18 (Jan. 1980) 16–24.CrossRefADSGoogle Scholar
  13. 13.
    Baldwin, B.S.; Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows, AIAA Paper 78-257, Huntsville, Ala. (1978).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • D. A. Johnson
    • 1
  • L. S. King
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations