Transonic Separated Flow Prediction Based on a Mathematically Simple, Nonequilibrium Turbulence Closure Model

  • D. A. Johnson
  • L. S. King
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (MANUTECH)


A mathematically simple, turbulence closure model designed to treat transonic airfoil flows even with massive separation is described. Numerical solutions of the Reynolds-averaged, Navier-Stokes equations obtained with this closure model are shown to agree well with experiments over a broad range of test conditions.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horstman, C.C.; Johnson, D.A.: Prediction of Transonic Separated Flow. AIAA Journal, vol. 22, no. 7 (July 1984) 1001–1003.0CrossRefADSGoogle Scholar
  2. 2.
    Cebeci, T.; Smith, A.M.O.: Analysis for Turbulent Boundary Layers. New York, Academic Press, 1974.Google Scholar
  3. 3.
    Jones, W.P.; Launder, B.E.: The Prediction of Laminarization with a Two-Equation Model of Turbulence, International Journal of Heat Transfer, vol. 15 (Feb. 1972) 301–314.CrossRefGoogle Scholar
  4. 4.
    Johnson, D.A.; King, L.S.: A New Turbulence Closure Model for Boundary Layer Flows with Strong Adverse Pressure Gradients and Separation, AIAA Paper 84-0175, Reno, Nev. (1984).Google Scholar
  5. 5.
    Johnson, D.A.: Predictions of Transonic Separated Flow with an Eddy-Viscosity/Reynolds-Shear-Stress Closure Model, AIAA Paper 85-1683, Cincinnati, Ohio (1985).Google Scholar
  6. 6.
    King, L.S.; Johnson, D.A.: Separated Transonic Airfoil Calculations with a Nonequilibrium Turbulence Model, NASA TM-86830, 1985.Google Scholar
  7. 7.
    Simpson, R.L.; Chew, Y.T.; Shivaprasad, B.G.: The Structure of a Separating Turbulent Boundary Layer. Part I. Mean Flow and Reynolds Stresses, Journal of Fluid Mechanics, vol. 113 (1981) 23–51.CrossRefADSGoogle Scholar
  8. 8.
    Bachalo, W.D.; Johnson, D.A.: An Investigation of Transonic Turbulent Boundary Layer Separation on an Axisymmetric Flow Model, AIAA Paper 79-1479, Williamsburg, Va. (1979).Google Scholar
  9. 9.
    MacCormack, R.W.: A Numerical Method for Solving the Equations of Compressible Viscous Flow. AIAA Journal, vol. 20 (Sept. 1982) 1275–1281.CrossRefMATHADSMathSciNetGoogle Scholar
  10. 10.
    Beam, R.; Warming, R.F.: An Implicit Factored Scheme for the Compressible Navier-Stokes Equations, Journal of Computational Physics, vol. 15 (1974) 299–319.CrossRefGoogle Scholar
  11. 11.
    Johnson, D.A.; Spaid, F.W.: Supercritical Airfoil Boundary-Layer and Near-Wake Measurements, Journal of Aircraft, vol. 20 (Apr. 1983) 298–305.CrossRefGoogle Scholar
  12. 12.
    Johnson, D.A.; Bachalo, W.D.: Transonic Flow Past a Symmetrical Airfoil—Inviscid and Turbulent Flow Properties, AIAA Journal, vol. 18 (Jan. 1980) 16–24.CrossRefADSGoogle Scholar
  13. 13.
    Baldwin, B.S.; Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows, AIAA Paper 78-257, Huntsville, Ala. (1978).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • D. A. Johnson
    • 1
  • L. S. King
    • 1
  1. 1.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations