Skip to main content

Abstract

Critical Phenomena is a part of Physics which has developed rapidly over the last 15 years, as exempled by the 1982 Hobel price for Physics which was awarded to K. Wilson for his major contribution in the field. Indeed the domain covered by this field is very large. The concept of a 2nd order phase transition, which is detailed below, allows many different phenomena encountered near a transition to be considered as being equivalent and so they can be formulated by the same universal laws. This universality applies to both the physical phenomena — not only critical points are involved but also percolation, fractals, etc. — and the physical systems. Indeed a very large number of physical systems, such as simple fluids, binary* or multicomponent fluid mixtures**- including metallic liquid mixtures -, liquid crystals, microemulsions, polymers, molten salt, alloys***, superfluid Helium, magnets, ferroelectrics, etc. exhibit the same universal behaviors. These systems can be classified into a few “universality classes”, according to very simple criteria as we will see below. In the following we will mostly deal with the “class” of fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Landau and E. Lifshitz, “Statistical Physics” (MIR, Moscow, 1967).

    Google Scholar 

  2. B. Widom, J. Chem. Phys. 43., 3892 (1965).

    Article  CAS  Google Scholar 

  3. L. S. Ornstein, and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914).

    Google Scholar 

  4. V.L. Ginzburg, Fiz. Tverd. Tela. 2, 2031 (1960).

    CAS  Google Scholar 

  5. K. G. Wilson and J. Kogut, Phys. Reports C12, 75 (1974).

    Article  Google Scholar 

  6. M. E. Fisher, Rep. Prog. Phys. 30, 615 (1967). see e.g. “Phase Transitions”, ed. by M. Levy

    Article  CAS  Google Scholar 

  7. J.C Le Guillou and J. Zinn-Justin (Plenum Press, New-York, 1982).

    Google Scholar 

  8. D. Stauffer, M. Ferer, M. Wortis, Phys. Rev. Lett. 29, 345 (1972).

    Article  CAS  Google Scholar 

  9. C. Bagnuls and C. Bervillier, Phys. Lett. 107A, 299 (1985).

    CAS  Google Scholar 

  10. F.J. Wegner, Phys. Rev. B5, 4529 (1972).

    Google Scholar 

  11. C. Bagnuls and C. Bervillier, J. Phys. (Paris) Lett. 45., L95 (1984).

    Google Scholar 

  12. A. Aharony and G. Ahlers, Phys. Rev. Lett. 44, 782 (1980).

    Article  CAS  Google Scholar 

  13. P.C. Hohenberg and B.I. Halperin, Phys. Rev. B13, 2110 (1976).

    Google Scholar 

  14. D. Beysens, A. Bourgou and G. Paladin, Phys. Rev. A30, 2686 (1984).

    Google Scholar 

  15. H. C. Burstyn and J. V. Sengers, Phys. Rev. A27, 1071 (1983).

    Google Scholar 

  16. J. K. Bhattachar j ee and R. A. Ferrel, Phys. Rev. A28, 2363 (1983).

    Google Scholar 

  17. E. D. Siggia, B.I. Halperin and P.C. Hohenberg, Phys. Rev. B13, 2110 (1976).

    Google Scholar 

  18. A. Onuki, K. Yamasaki and K. Kawasaki, Ann. Phys. 131, 217 (1981).

    Article  CAS  Google Scholar 

  19. D. Beysens, M. Ghadamassi and B. Moncef-Bouanz, Phys. Rev. 28A, 2491 (1983).

    Google Scholar 

  20. W.I. Goldburg, in “Scattering Techniques”, ed. by S. H. Chen, B. Chu and R. Nossal (Plenum Press, New-York, 1981).

    Google Scholar 

  21. N. C. Wong and C. M. Knobler, J. Chem. Phys. 69., 725 (1978).

    Article  CAS  Google Scholar 

  22. see e. g. K. Kawasaki and T. Otha, Prog. Theor. Phys. 59, 362 (1978).

    Article  Google Scholar 

  23. D.J. Turner, in Proc. 4th European Symposium on Materials Processing under microgravity, Madrid (1983) (ESA SP-191).

    Google Scholar 

  24. see e.g. J. Ramakrishnan, N. Nagarajan, Anil Kumar, E. S. R. Gopal, P. Chandrasekhar and N. Ananthakri shna, J. Chem. Phys. 68., 4098 (1978).

    Article  CAS  Google Scholar 

  25. M. Moldover and J. Cahn, Sciences 207, 1073 (1980).

    Article  CAS  Google Scholar 

  26. see e. g. the review by M. R. Moldover and J. W. Schmidt Physica 1 2D, 351 (1984).

    Google Scholar 

  27. D. Beysens and D. Esteve, Phys. Rev. Lett. 54, 21 23 (1985).

    Google Scholar 

  28. D. Beysens and S. Leibler, J. Phys. (Paris) Lettres, 43, L133 (1982)

    Google Scholar 

  29. C. Franck and S. E. Schnatterly, Phys. Rev. Lett. 48, 763 (1982).

    Article  CAS  Google Scholar 

  30. M. E. Fisher and P. G. de Gennes, C. R. Acad. Sci. Paris 287B, 207 (1978).

    Google Scholar 

  31. R.J. Huijser, A.C. Michels and N.J. Trappeniers, in the same ref. as [9.23].

    Google Scholar 

  32. K. Nitsche, J. Straub and R. Lange, in Proc. 5th European Symposium on Material Sciences under Hicrogravity, Schloss Elmau (1984) (ESA SP-222).

    Google Scholar 

  33. J. A. Lipa, Proc. of Near Zero Conference, Stanford (1983), to be published.

    Google Scholar 

  34. G. H. Fi ndenneg, in the same ref. as [9.23].

    Google Scholar 

  35. M. R. Moldover and R. W. Gammon, NASA contractor Report CR 174637.

    Google Scholar 

  36. H. Meyer and R. P. Behringer, NASA Proposal NAG4–379 (1984).

    Google Scholar 

  37. R. Lange and J. Straub, Internal Report (Technische Uni versi tät München -L-A. für Thermodynamik).

    Google Scholar 

  38. H. Klein and K. Wanders, AIAA Journal 20, 946 (1982)

    Article  CAS  Google Scholar 

  39. D. Langbein and W. Heide, Adv. Space Res. 4, 27 (1984)

    Article  CAS  Google Scholar 

  40. D. Beysens, Proceed, of the 35th Congress of the International Astronautical Federation, Lausanne 1984. and Acta Astro. 12, 141 (1985).

    Google Scholar 

  41. C. Houessou, P. Guenoun, R.” Gastaud, F. Perrot and D. Beysens, Phys. Rev. 32., (1985).

    Google Scholar 

  42. D. Beysens, P. Guenoun and F. Perrot, to be published.

    Google Scholar 

  43. D. Beysens, P. Baudry and J. C. Legros, to be published.

    Google Scholar 

  44. H. Klein, D. Woermann, H. Hamacher and K. Wanders, Private communication.

    Google Scholar 

  45. D. Beysens, P. Guenoun and F. Perrot, D2-proposal [CEA Internal Report].

    Google Scholar 

  46. D.J. Turner, CERL Note, TPRDS/L/2802/N85 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Beysens, D. (1986). Critical Phenomena. In: Feuerbacher, B., Hamacher, H., Naumann, R.J. (eds) Materials Sciences in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82761-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82761-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82763-1

  • Online ISBN: 978-3-642-82761-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics