Skip to main content

Convection and Bulk Transport

  • Chapter
Materials Sciences in Space

Abstract

Probably the most alluring prospect of performing experiments in a low-gravity environment is the ability of freeing an experiment from the action of the earth’s gravity, which although constant and of known direction, has pronounced effects on the processing of fluids and gases. The most important effects of gravity are the impossibility of levitating a fluid mass isolated from solid surfaces and the consequences of buoyancy-driven-convection caused by gradients of temperature and concentration in the fluid. It was recognized over a decade ago that the large reductions in gravity possible aboard an orbital spacecraft will remove these two effects and lead to new experiments and, possibly, to the development of new methods for processing materials. In conjunction with the enormous interest in experimental research in a low-gravity environment, many new analyses have been reported that add to the understanding of transport phenomena both on earth and in space relevant to the design and intepretation of these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carruthers, J.R.; Witt, A.F.: in Crystal growth and characterization. Ueda, R.; Mullins, J.B. (eds.). Amsterdam: North-Holland 1975.

    Google Scholar 

  2. Witt, A.F.; Gatos, H.C.; Lichtensteiger, M.; Hermann, J.C.: Crystal Growth and Steady-state segregation under zero gravity: Ge. J. Electrochem. Soc. 125 (1975) 1832–1840.

    Article  Google Scholar 

  3. Brazier-Smith, P.R., Brook, M., Latham, J., Saunders, C.P.R., Smith, M.H.: The vibration of electrified drops. Proc. R. Soc. Lond. 322 (1971) 523–534.

    Article  Google Scholar 

  4. Swiatecki, W.J.: The rotating, charged or gravitating liquid drop and problems in nuclear physics and astronomy. In Proc. int. colloq. on drops and bubbles. D.J. Collins, M.S. Plessetand M. M. Saffren (eds.) Pasadena: Jet Propulsion Laboratory 1974.

    Google Scholar 

  5. Tsamopoulos, J.A.; Brown, R.A.: Resonant oscillations of inviscid charged drops. J. Fluid Mech. 147 (1984) 373–395.

    Article  CAS  Google Scholar 

  6. Natarajan, R.; Brown, R.A.: Nonaxisymmetric second-order resonance in oscillating liquid drops. Physics of Fluid (1985) submitted.

    Google Scholar 

  7. Kendall, J.M.: Hydrodynamic performance of an annular liquid jet: production of liquid shells. In Proc. 2nd int. colloq. on drops and bubbles, D.H. Le Croissette (ed.) Pasadena: Jet Propulsion Laboratory 1981.

    Google Scholar 

  8. Tsamopoulos, J.A.; Brown, R.A.: Dynamics Centering of Liquid Shells. Physics of Fluids (1985) in press.

    Google Scholar 

  9. Schlichting, H.: Boundary-layer theory. New York: McGraw-Hill 1968.

    Google Scholar 

  10. Muller, G.; Neumann, G.; Weber, W.: Natural convection in vertical Bridgman configuration. J. Crystal Growth 70 (1984) 78–93.

    Article  Google Scholar 

  11. Swinney, H.L.; Gollub, J.P.: Hydrodynamic instabilities and the transition to turbulence. Berlin: Springer-Verlag 1981.

    Google Scholar 

  12. Olson, J.M.; Rosenberger, F.: Convective instabilités in a closed vertical cylinder heated from below. J. Fluid Mech. 92 (1979) 609–629.

    Article  Google Scholar 

  13. Busse, F.H.: The oscillatory instability of convection rolls in low Prandtl number fluid. J. Fluid Mech. 52 (1972) 97–112.

    Article  Google Scholar 

  14. Yamaguchi, Y.; Chang, C.J.; Brown, R.A.: Multiple Buoyancydriven flows in a vertical cylinder heated from below. Philos. Trans. R. Soc. Lond. (1984) A312 519–552.

    Article  Google Scholar 

  15. Sackinger, P.A.; Brown, R.A.; McFadden, G.B.: Eigenfunction expansions for determining structure of natural convection in a vertical cylinder heated from below. J. Fluid Mech (1985) submitted.

    Google Scholar 

  16. Charlson, G.S.; Sani, R.L.: Finite amplitude axisymmetric thermoconvective flows in a bounded cylindrical layer of fluid. J. Fluid Mech. 21 (1975) 209–229.

    Article  Google Scholar 

  17. McLaughlin, J.B.; Orszag, S.A.: Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122 (1982) 123–142.

    Article  CAS  Google Scholar 

  18. Hall, P.; Walton, I.C.: The smooth transition to a convective regime in a two-dimensional box. Proc. R. Soc Lond. A358 (1977) 199–221.

    Google Scholar 

  19. Dressler, R.F.: Transient thermal convection during orbital spaceflight. J.Crystal Growth 54 (1981) 523–533.

    Article  Google Scholar 

  20. Hurle, D.T.J.; Jakeman, E.; Johnson, C.P.: Temperature oscillations in molten gallium. J. Fluid Mech. 64 (1974) 565–576.

    Article  Google Scholar 

  21. Crochet, M.J.; Geyling, F.T.; Van Schaftingen, J.J.: Numerical simulation of horizontal Bridgman growth. Part I: Two- dimensional flow. J. Fluid Mech. (1985) submitted.

    Google Scholar 

  22. Cormack, D.E.; Leal, L.G.; Imberger, J.: Natural convection in a shallow cavity with differentially heated end walls. Part I. Asymptotic theory. J. Fluid Mech. 65 (1974) 209–229.

    Article  Google Scholar 

  23. Cormack, D.E.; Leal L.G.; Seinfeld, J.H.: Natural convection in a shallow cavity with differentially heated end walls. Part I. Numerical Solutions. J. Fluid Mech. 65 (1974) 231–246.

    Article  Google Scholar 

  24. Hart, J.E.: Low Prandtl number convection between differentially heated walls. Int. J. Heat Mass Transfer 26 (1983) 1069–1074.

    Article  Google Scholar 

  25. Hart, J.E.: A note on the stability of low-Prandtl-number Hadley circulations. J. Fluid Mec. 132 (1983) 271–281.

    Article  Google Scholar 

  26. Chen, C.F. and Johnson, D.H.: Doubles-diffusive convection: a report on an Engineering Foundation Conference. J. Fluid Mech. 138 (1984) 405–416.

    Article  Google Scholar 

  27. Coriell, S.R.; Cordes, M.R.; Boettinger, W.J.; Sekerka, R.F.: Convective and interfacial instability during unidirectional solidification of a binary melt. J. Crystal Growth (1980) 49 13–28.

    Article  CAS  Google Scholar 

  28. Brown, R.A.; Chang, C.J.; Adornato, P.A.; Finite element analysis of directional solidification of dilute and concentrated binary alloys, in Modeling of Casting and Welding Process II. J.A. Dantzig and J.T. Berry (eds.) The Metallurgical Soceity of the AIME, Philadelphia, 1983.

    Google Scholar 

  29. McFadden, G.B.; Rehm, R.G.; Coriell, S.R., Clark, W.; Morrish, K.A.: Thermosolutal convection during directional solidification. Metall. Trans. A15 (1984) 2125–2135.

    Article  Google Scholar 

  30. Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4 (1958) 489–500.

    Article  Google Scholar 

  31. Scriven, L.E.; Sternling, C.V.: On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19 (1964) 321–340.

    Article  Google Scholar 

  32. Harriott, G.M.: Fluid flow and mass transport in a small floating zone. Ph.d Thesis, Cambridge: Massachusetts Insittute of Technology 1983.

    Google Scholar 

  33. Da-Riva, I., Pereira, E.A.: A regular perturbation approach to surface tension driven flows. Acta Astronautica 9 (1981) 217–224.

    Article  Google Scholar 

  34. Sen, A.K.; Davis, S.H.: Steady thermocapillary flows in two-dimensional slots J. Fluid Mech. 121 (1982) 163–186.

    Article  CAS  Google Scholar 

  35. Xu, J.J.; Davis, S.H.: Liquid bridges with thermocapillari ty. Physics of Fluids 26 (1983) 1177–1182.

    Article  Google Scholar 

  36. Ungar, L.H., Brown, R.A.:The dependence of the shape and stability of captive rotating drops on multiple parameters. Phil. Trans. R. Soc. Lond. (1982) a 306 347–370.

    Article  Google Scholar 

  37. Smith, M.C.; Davis, S.H.: The instability of sheared liquid layers. J. Fluid Mech. (1982) 121 187–206.

    Article  Google Scholar 

  38. Smith, M.C.; Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilités. J. Fluid Mech. 132 (1983) 119–144.

    Article  CAS  Google Scholar 

  39. Smith, M.C.; Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part 1. Surface-wave instabilites. J. Fluid Mech. 132 (1983) 145–162.

    Article  CAS  Google Scholar 

  40. Homsy, G.M.; Meiburg, E.: The? effect of surface contamination on thermocapillary flow in a two-dimensional slot. J. Fluid Mech. 139 (1984) 443–459.

    Article  CAS  Google Scholar 

  41. Carpenter, B.; Homsy, G.M.: The effect of surface contamination on thermocapillary flow in a two-dimensional slot. Part 2. Partially contaminated interfaces. J. Fluid Mech. 155 (1985) 429–439.

    Article  CAS  Google Scholar 

  42. Chun, C.-H.: Marangoni convection in floating zone under reduced gravity. J. Crystal Growth 48 (1981) 600–616.

    Article  Google Scholar 

  43. Smith, M.K.: T hermocapi11ary and centrifugal-buoyancy-drivenmotion in a rapidly rotating liquid cylinder. J. Fluid Mech. (1985) in press.

    Google Scholar 

  44. Harriott, G. M ; Brown, R.A.: Flow in a differentially rotated cylindrical drop at low Reynolds number. J. Fxuia Mech. 126 (1983) 269–285.

    Article  CAS  Google Scholar 

  45. Kamotani, Y.; Ostrach, S.; Vargas, M: Oscillatory thermocapillary convection in a simulated f1oating-zone configuration. J. Crystal Growth 66 (1984) 83–90.

    Article  CAS  Google Scholar 

  46. Burton, J.A.;Prim, R.C.;Slichter, W.P.: The distribution of solute in crystals grown from the melt. J. Chem. Phys. 21 (1953) 1987–1991.

    Article  CAS  Google Scholar 

  47. Bourret, E.D.; Derby, J.J.; Brown, R.A.: Dynamics of Bridgman-Stockbarger growth of non-dilute binary alloys. J. Crystal Growth 71 (1985) 587–596.

    Article  CAS  Google Scholar 

  48. Scheil, E.: Bermerkungen zur S chi cktkr i stallbilbung. Z. Met allk. 34 (1942) 70–72.

    Google Scholar 

  49. Favier, J.J.: Initial transient segregation during unidirectional solidification of a binary alloy in a furnace with thermal damping. J. Crystal Growth 49 (1980) 373–380.

    Article  CAS  Google Scholar 

  50. Chang, C.J.; Brown, R.A.: Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth. J. Crystal Growth 63 (1983) 343–364.

    Article  CAS  Google Scholar 

  51. Adornato, P.A.; Brown, R.A.: Convection and segregation of dilute and non-dilute binary alloys: Effect ampoule and furnace design. J. Crystal Growth (1985) submitted.

    Google Scholar 

  52. Wang, C.A.: Crystal growth and segregation in vertical Bridgman configuration. Ph.D. Thesis, Cambridge: Massachusetts Insitute of Technology 1984.

    Google Scholar 

  53. Jasinski, T.J.: Thermal analysis of the vertical Bridgman semiconductor crystal growth technique. Ph.D. Thesis, Cambridge: Massachusetts Institute of Technology 1982.

    Google Scholar 

  54. Hurle, D.T.J.; Jakeman, E.; Wheeler, A.A.: Hydrodynamic stability of the melt during solidification of a binary alloy. Physics Fluids 26 (1983) 624–626.

    Article  CAS  Google Scholar 

  55. Adornato, P.M.; Brown, R.A.: Petrov-Galerkin methods for natural convection in directional solidification of binary alloys. J. Computat. Physics (1985) submitted.

    Google Scholar 

  56. Bourret, E.D.; Derby, J.J.; Brown, R.A.; Witt, A.F.: Segregation effects during growth of pseudo-binary systems with large 1iquidus-solidus separation. Acta Astronautic 11 (1984) 163–171.

    Article  CAS  Google Scholar 

  57. Rouzaud, A.; Favier, J.J.: A comparative study of thermal and thermosolutal convective effects in vertical Bridgman crystal growth. Part I Experimental Results. J. Crystal Growth (1985) in press.

    Google Scholar 

  58. Rouzaud, A.; Camel, D.; Favier, J.J.: A comparative study of thermal and thermosolutal convective effects in vertical Bridgman crystal growth. Part I Theoretical Analysis. J. Crystal Growth (1985) in press.

    Google Scholar 

  59. Glicksman, M.E.; Coriell, S.R.; McFadden, G.B.: Interaction of flows with the crystal-melt interface. Ann. Rev. Fluid Mech. (1985) in press.

    Google Scholar 

  60. Davis, S.H.; Muller, U.; Dietsche, C.: Pattern selection in single component systems coupling Benard convection and solidification. J. Fluid Mech. 144 (1984) 133–151.

    Article  Google Scholar 

  61. Chang, C.J.; Brown, R.A.: Natural convection in steady solidification: finite-element analysis of a two-phase Rayleigh-Benard problem. J. Computat. Physics 53 (1984) 1–27.

    Article  CAS  Google Scholar 

  62. McFadden, G.B.; Coriell, S.R.; Boisvert, r.F.; Glicksman, M.E.; Fang, Q.T.: Morphological stability in the presence of fluid flow in the melt. Metall. Trans A15 (1984) 2117–2124.

    Article  Google Scholar 

  63. Coriell, S.R.; Hardy, S.C.; Cordes, M.R.: Stability of liquid zones. J. Colloid Interface Sci. (1977) 60 126–136.

    Article  CAS  Google Scholar 

  64. Brown, R.A.; Scriven, L.E.: The shape and stability of captive rotating drops. Philos. Trans. R. Soc. Lond (1980) A297 51–79.

    Article  Google Scholar 

  65. Duranceau, J.L.; Brown, R.A.: Thermal-capillary analysis of small-scale floating zones: steady-state calculations. J. Crystal Growth (1985) submitted.

    Google Scholar 

  66. Kern, E.L.: Microgravity Si zoning investigation. NASA Report, NAS8–34920, 1984.

    Google Scholar 

  67. Harriott, G.M.; Brown, R.A.: Steady solute fields induced by differential rotation in a sniall floating zone. J. Crystal Growth 69 (1984) 589–604.

    Article  CAS  Google Scholar 

  68. Harriott, G.M.; Brown; R.A.: Flow in a differentially rotated cylindrical drop at moderate Reynolds number. J. Fluid Mech.144 (1984) 403–418.

    Article  CAS  Google Scholar 

  69. Kobayashi, N.; Wilcox, W.R.: Computational studies of convection due to rotation in a cylindrical floating zone. J. Crystal Growth 59 (1982) 616–624.

    Article  CAS  Google Scholar 

  70. Clark, P.A.; Wilcox, W.R.: Influence of gravity on thermocapillary convection in floating zone melting of silicon, J. Crystal Growth 50 (1980) 461–469.

    Article  CAS  Google Scholar 

  71. Chun, Ch.-H: Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection. Acta Astronautic 7 (1980) 479–488.

    Article  CAS  Google Scholar 

  72. Preisser, G.; Schwabe, D.; Scharmann, A.: Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surfaces. J. Fluid Mech. 126 (1982) 545–567

    Article  Google Scholar 

  73. Schwabe, D.; Preisser, G.; Scharmann, A.: Verification of the oscillatory state of thermocapilary convection in a floating zone under low gravity. Acta Ast. (1982) 9 (1982) 265–273.

    Article  CAS  Google Scholar 

  74. Plateau, J.A.F.: Statique Experimentale et Theoritique des liquides soumis aux seules forces moelcu1 aires. Paris: Gauthier-Villars 1873.

    Google Scholar 

  75. Trinh, E.; Zwern, A.; Wang, T.G.: An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115 (1982) 453–474.

    Article  CAS  Google Scholar 

  76. Trinh, E.; Wang, T.G.: Large amplitude free and driven drop shape oscillations: experimental observations. J. Fluid Mech. 122 (1982) 315–338.

    Article  Google Scholar 

  77. Tsamopoulos, J.A.; Brown, R.A.: Nonlinear oscillations of drops and bubbles. J. Fluid Mech. 127 (1983) 519–537.

    Article  CAS  Google Scholar 

  78. Foote, G.B.: A numerical method for studying simple drop behavior: simple oscillations. J. Computat. Physics 11 (1973) 507–530.

    Article  Google Scholar 

  79. Alonso, C.T.: The dynamics of colliding and oscillating drops. In Proc. int. colloq. on drops and bubbles. Pasadena: Jet Propulsion Laboratiry 1974.

    Google Scholar 

  80. Benner, R.E.: Equilbria, stability, and bifurcati’ons in fluid physics. Ph.D. Thesis, University of Minnesota 1983.

    Google Scholar 

  81. Jacobi, N.; Croonquist, A.P.; Elieman, D.D.; Wang; T.G.: Acoustically induced oscillation and rotation of a large drop in space. In Proc. 2nd int. colloq. on drops and bubbles. D.H. Le Croissette (ed.) Pasadena: Jet Propulsion Laboratory 1981.

    Google Scholar 

  82. Davis, R.E.; Ray, A.K.; Single aerosol particle size and mass measurements using a electrodynamic balance. J. Colloid Interface Sci. 75 (1980) 566–576.

    Article  CAS  Google Scholar 

  83. Adornato, P.M.; Brown, R.A.: Shape and stability of electrostatically levitated drops. Proc. R. Soc. Lond. A389 (1983) 101–117.

    Article  Google Scholar 

  84. Rayleigh, J.W.S.: On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14 (1882) 184–186.

    Google Scholar 

  85. Tsamopoulos, J.A.; Akyllas, A.; Brown, R.A.: Dynamics of charged drop breakup. Proc. R. Soc. Lond. (1985) in press.

    Google Scholar 

  86. Lee, M.C.; Feng, I.; Elleman, D.D.; Wang, T.G.; Young, A.T.: Generation of a strong centering force in a submillimeter compound droplet system. In Proc. 2nd int. colloq. on drops and bubbles. D.H. Le Croissette (ed.) Pasadena: Jet Propulsion Laboratory 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Brown, R.A. (1986). Convection and Bulk Transport. In: Feuerbacher, B., Hamacher, H., Naumann, R.J. (eds) Materials Sciences in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82761-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82761-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82763-1

  • Online ISBN: 978-3-642-82761-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics