Convection and Bulk Transport

  • Robert A. Brown


Probably the most alluring prospect of performing experiments in a low-gravity environment is the ability of freeing an experiment from the action of the earth’s gravity, which although constant and of known direction, has pronounced effects on the processing of fluids and gases. The most important effects of gravity are the impossibility of levitating a fluid mass isolated from solid surfaces and the consequences of buoyancy-driven-convection caused by gradients of temperature and concentration in the fluid. It was recognized over a decade ago that the large reductions in gravity possible aboard an orbital spacecraft will remove these two effects and lead to new experiments and, possibly, to the development of new methods for processing materials. In conjunction with the enormous interest in experimental research in a low-gravity environment, many new analyses have been reported that add to the understanding of transport phenomena both on earth and in space relevant to the design and intepretation of these experiments.


Natural Convection Rayleigh Number Directional Solidification Marangoni Number Dimensionless Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    Carruthers, J.R.; Witt, A.F.: in Crystal growth and characterization. Ueda, R.; Mullins, J.B. (eds.). Amsterdam: North-Holland 1975.Google Scholar
  2. 4.2
    Witt, A.F.; Gatos, H.C.; Lichtensteiger, M.; Hermann, J.C.: Crystal Growth and Steady-state segregation under zero gravity: Ge. J. Electrochem. Soc. 125 (1975) 1832–1840.CrossRefGoogle Scholar
  3. 4.3
    Brazier-Smith, P.R., Brook, M., Latham, J., Saunders, C.P.R., Smith, M.H.: The vibration of electrified drops. Proc. R. Soc. Lond. 322 (1971) 523–534.CrossRefGoogle Scholar
  4. 4.4
    Swiatecki, W.J.: The rotating, charged or gravitating liquid drop and problems in nuclear physics and astronomy. In Proc. int. colloq. on drops and bubbles. D.J. Collins, M.S. Plessetand M. M. Saffren (eds.) Pasadena: Jet Propulsion Laboratory 1974.Google Scholar
  5. 4.5
    Tsamopoulos, J.A.; Brown, R.A.: Resonant oscillations of inviscid charged drops. J. Fluid Mech. 147 (1984) 373–395.CrossRefGoogle Scholar
  6. 4.6
    Natarajan, R.; Brown, R.A.: Nonaxisymmetric second-order resonance in oscillating liquid drops. Physics of Fluid (1985) submitted.Google Scholar
  7. 4.7
    Kendall, J.M.: Hydrodynamic performance of an annular liquid jet: production of liquid shells. In Proc. 2nd int. colloq. on drops and bubbles, D.H. Le Croissette (ed.) Pasadena: Jet Propulsion Laboratory 1981.Google Scholar
  8. 4.8
    Tsamopoulos, J.A.; Brown, R.A.: Dynamics Centering of Liquid Shells. Physics of Fluids (1985) in press.Google Scholar
  9. 4.9
    Schlichting, H.: Boundary-layer theory. New York: McGraw-Hill 1968.Google Scholar
  10. 4.10
    Muller, G.; Neumann, G.; Weber, W.: Natural convection in vertical Bridgman configuration. J. Crystal Growth 70 (1984) 78–93.CrossRefGoogle Scholar
  11. 4.11
    Swinney, H.L.; Gollub, J.P.: Hydrodynamic instabilities and the transition to turbulence. Berlin: Springer-Verlag 1981.Google Scholar
  12. 4.12
    Olson, J.M.; Rosenberger, F.: Convective instabilités in a closed vertical cylinder heated from below. J. Fluid Mech. 92 (1979) 609–629.CrossRefGoogle Scholar
  13. 4.13
    Busse, F.H.: The oscillatory instability of convection rolls in low Prandtl number fluid. J. Fluid Mech. 52 (1972) 97–112.CrossRefGoogle Scholar
  14. 4.14
    Yamaguchi, Y.; Chang, C.J.; Brown, R.A.: Multiple Buoyancydriven flows in a vertical cylinder heated from below. Philos. Trans. R. Soc. Lond. (1984) A312 519–552.CrossRefGoogle Scholar
  15. 4.15
    Sackinger, P.A.; Brown, R.A.; McFadden, G.B.: Eigenfunction expansions for determining structure of natural convection in a vertical cylinder heated from below. J. Fluid Mech (1985) submitted.Google Scholar
  16. 4.16
    Charlson, G.S.; Sani, R.L.: Finite amplitude axisymmetric thermoconvective flows in a bounded cylindrical layer of fluid. J. Fluid Mech. 21 (1975) 209–229.CrossRefGoogle Scholar
  17. 4.17
    McLaughlin, J.B.; Orszag, S.A.: Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122 (1982) 123–142.CrossRefGoogle Scholar
  18. 4.18
    Hall, P.; Walton, I.C.: The smooth transition to a convective regime in a two-dimensional box. Proc. R. Soc Lond. A358 (1977) 199–221.Google Scholar
  19. 4.19
    Dressler, R.F.: Transient thermal convection during orbital spaceflight. J.Crystal Growth 54 (1981) 523–533.CrossRefGoogle Scholar
  20. 4.20
    Hurle, D.T.J.; Jakeman, E.; Johnson, C.P.: Temperature oscillations in molten gallium. J. Fluid Mech. 64 (1974) 565–576.CrossRefGoogle Scholar
  21. 4.21
    Crochet, M.J.; Geyling, F.T.; Van Schaftingen, J.J.: Numerical simulation of horizontal Bridgman growth. Part I: Two- dimensional flow. J. Fluid Mech. (1985) submitted.Google Scholar
  22. 4.22
    Cormack, D.E.; Leal, L.G.; Imberger, J.: Natural convection in a shallow cavity with differentially heated end walls. Part I. Asymptotic theory. J. Fluid Mech. 65 (1974) 209–229.CrossRefGoogle Scholar
  23. 4.23
    Cormack, D.E.; Leal L.G.; Seinfeld, J.H.: Natural convection in a shallow cavity with differentially heated end walls. Part I. Numerical Solutions. J. Fluid Mech. 65 (1974) 231–246.CrossRefGoogle Scholar
  24. 4.24
    Hart, J.E.: Low Prandtl number convection between differentially heated walls. Int. J. Heat Mass Transfer 26 (1983) 1069–1074.CrossRefGoogle Scholar
  25. 4.25
    Hart, J.E.: A note on the stability of low-Prandtl-number Hadley circulations. J. Fluid Mec. 132 (1983) 271–281.CrossRefGoogle Scholar
  26. 4.26
    Chen, C.F. and Johnson, D.H.: Doubles-diffusive convection: a report on an Engineering Foundation Conference. J. Fluid Mech. 138 (1984) 405–416.CrossRefGoogle Scholar
  27. 4.27
    Coriell, S.R.; Cordes, M.R.; Boettinger, W.J.; Sekerka, R.F.: Convective and interfacial instability during unidirectional solidification of a binary melt. J. Crystal Growth (1980) 49 13–28.CrossRefGoogle Scholar
  28. 4.28
    Brown, R.A.; Chang, C.J.; Adornato, P.A.; Finite element analysis of directional solidification of dilute and concentrated binary alloys, in Modeling of Casting and Welding Process II. J.A. Dantzig and J.T. Berry (eds.) The Metallurgical Soceity of the AIME, Philadelphia, 1983.Google Scholar
  29. 4.29
    McFadden, G.B.; Rehm, R.G.; Coriell, S.R., Clark, W.; Morrish, K.A.: Thermosolutal convection during directional solidification. Metall. Trans. A15 (1984) 2125–2135.CrossRefGoogle Scholar
  30. 4.30
    Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4 (1958) 489–500.CrossRefGoogle Scholar
  31. 4.31
    Scriven, L.E.; Sternling, C.V.: On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19 (1964) 321–340.CrossRefGoogle Scholar
  32. 4.32
    Harriott, G.M.: Fluid flow and mass transport in a small floating zone. Ph.d Thesis, Cambridge: Massachusetts Insittute of Technology 1983.Google Scholar
  33. 4.33
    Da-Riva, I., Pereira, E.A.: A regular perturbation approach to surface tension driven flows. Acta Astronautica 9 (1981) 217–224.CrossRefGoogle Scholar
  34. 4.34
    Sen, A.K.; Davis, S.H.: Steady thermocapillary flows in two-dimensional slots J. Fluid Mech. 121 (1982) 163–186.CrossRefGoogle Scholar
  35. 4.35
    Xu, J.J.; Davis, S.H.: Liquid bridges with thermocapillari ty. Physics of Fluids 26 (1983) 1177–1182.CrossRefGoogle Scholar
  36. 4.36
    Ungar, L.H., Brown, R.A.:The dependence of the shape and stability of captive rotating drops on multiple parameters. Phil. Trans. R. Soc. Lond. (1982) a 306 347–370.CrossRefGoogle Scholar
  37. 4.37
    Smith, M.C.; Davis, S.H.: The instability of sheared liquid layers. J. Fluid Mech. (1982) 121 187–206.CrossRefGoogle Scholar
  38. 4.38
    Smith, M.C.; Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilités. J. Fluid Mech. 132 (1983) 119–144.CrossRefGoogle Scholar
  39. 4.39
    Smith, M.C.; Davis, S.H.: Instabilities of dynamic thermocapillary liquid layers. Part 1. Surface-wave instabilites. J. Fluid Mech. 132 (1983) 145–162.CrossRefGoogle Scholar
  40. 4.40
    Homsy, G.M.; Meiburg, E.: The? effect of surface contamination on thermocapillary flow in a two-dimensional slot. J. Fluid Mech. 139 (1984) 443–459.CrossRefGoogle Scholar
  41. 4.41
    Carpenter, B.; Homsy, G.M.: The effect of surface contamination on thermocapillary flow in a two-dimensional slot. Part 2. Partially contaminated interfaces. J. Fluid Mech. 155 (1985) 429–439.CrossRefGoogle Scholar
  42. 4.42
    Chun, C.-H.: Marangoni convection in floating zone under reduced gravity. J. Crystal Growth 48 (1981) 600–616.CrossRefGoogle Scholar
  43. 4.43
    Smith, M.K.: T hermocapi11ary and centrifugal-buoyancy-drivenmotion in a rapidly rotating liquid cylinder. J. Fluid Mech. (1985) in press.Google Scholar
  44. 4.44
    Harriott, G. M ; Brown, R.A.: Flow in a differentially rotated cylindrical drop at low Reynolds number. J. Fxuia Mech. 126 (1983) 269–285.CrossRefGoogle Scholar
  45. 4.45
    Kamotani, Y.; Ostrach, S.; Vargas, M: Oscillatory thermocapillary convection in a simulated f1oating-zone configuration. J. Crystal Growth 66 (1984) 83–90.CrossRefGoogle Scholar
  46. 4.46
    Burton, J.A.;Prim, R.C.;Slichter, W.P.: The distribution of solute in crystals grown from the melt. J. Chem. Phys. 21 (1953) 1987–1991.CrossRefGoogle Scholar
  47. 4.47
    Bourret, E.D.; Derby, J.J.; Brown, R.A.: Dynamics of Bridgman-Stockbarger growth of non-dilute binary alloys. J. Crystal Growth 71 (1985) 587–596.CrossRefGoogle Scholar
  48. 4.48
    Scheil, E.: Bermerkungen zur S chi cktkr i stallbilbung. Z. Met allk. 34 (1942) 70–72.Google Scholar
  49. Favier, J.J.: Initial transient segregation during unidirectional solidification of a binary alloy in a furnace with thermal damping. J. Crystal Growth 49 (1980) 373–380.CrossRefGoogle Scholar
  50. 4.50
    Chang, C.J.; Brown, R.A.: Radial segregation induced by natural convection and melt/solid interface shape in vertical Bridgman growth. J. Crystal Growth 63 (1983) 343–364.CrossRefGoogle Scholar
  51. 4.51
    Adornato, P.A.; Brown, R.A.: Convection and segregation of dilute and non-dilute binary alloys: Effect ampoule and furnace design. J. Crystal Growth (1985) submitted.Google Scholar
  52. 4.52
    Wang, C.A.: Crystal growth and segregation in vertical Bridgman configuration. Ph.D. Thesis, Cambridge: Massachusetts Insitute of Technology 1984.Google Scholar
  53. 4.53
    Jasinski, T.J.: Thermal analysis of the vertical Bridgman semiconductor crystal growth technique. Ph.D. Thesis, Cambridge: Massachusetts Institute of Technology 1982.Google Scholar
  54. 4.54
    Hurle, D.T.J.; Jakeman, E.; Wheeler, A.A.: Hydrodynamic stability of the melt during solidification of a binary alloy. Physics Fluids 26 (1983) 624–626.CrossRefGoogle Scholar
  55. 4.55
    Adornato, P.M.; Brown, R.A.: Petrov-Galerkin methods for natural convection in directional solidification of binary alloys. J. Computat. Physics (1985) submitted.Google Scholar
  56. 4.56
    Bourret, E.D.; Derby, J.J.; Brown, R.A.; Witt, A.F.: Segregation effects during growth of pseudo-binary systems with large 1iquidus-solidus separation. Acta Astronautic 11 (1984) 163–171.CrossRefGoogle Scholar
  57. 4.57
    Rouzaud, A.; Favier, J.J.: A comparative study of thermal and thermosolutal convective effects in vertical Bridgman crystal growth. Part I Experimental Results. J. Crystal Growth (1985) in press.Google Scholar
  58. 4.58
    Rouzaud, A.; Camel, D.; Favier, J.J.: A comparative study of thermal and thermosolutal convective effects in vertical Bridgman crystal growth. Part I Theoretical Analysis. J. Crystal Growth (1985) in press.Google Scholar
  59. 4.59
    Glicksman, M.E.; Coriell, S.R.; McFadden, G.B.: Interaction of flows with the crystal-melt interface. Ann. Rev. Fluid Mech. (1985) in press.Google Scholar
  60. 4.60
    Davis, S.H.; Muller, U.; Dietsche, C.: Pattern selection in single component systems coupling Benard convection and solidification. J. Fluid Mech. 144 (1984) 133–151.CrossRefGoogle Scholar
  61. 4.61
    Chang, C.J.; Brown, R.A.: Natural convection in steady solidification: finite-element analysis of a two-phase Rayleigh-Benard problem. J. Computat. Physics 53 (1984) 1–27.CrossRefGoogle Scholar
  62. 4.62
    McFadden, G.B.; Coriell, S.R.; Boisvert, r.F.; Glicksman, M.E.; Fang, Q.T.: Morphological stability in the presence of fluid flow in the melt. Metall. Trans A15 (1984) 2117–2124.CrossRefGoogle Scholar
  63. 4.63
    Coriell, S.R.; Hardy, S.C.; Cordes, M.R.: Stability of liquid zones. J. Colloid Interface Sci. (1977) 60 126–136.CrossRefGoogle Scholar
  64. 4.64
    Brown, R.A.; Scriven, L.E.: The shape and stability of captive rotating drops. Philos. Trans. R. Soc. Lond (1980) A297 51–79.CrossRefGoogle Scholar
  65. 4.65
    Duranceau, J.L.; Brown, R.A.: Thermal-capillary analysis of small-scale floating zones: steady-state calculations. J. Crystal Growth (1985) submitted.Google Scholar
  66. 4.66
    Kern, E.L.: Microgravity Si zoning investigation. NASA Report, NAS8–34920, 1984.Google Scholar
  67. 4.67
    Harriott, G.M.; Brown, R.A.: Steady solute fields induced by differential rotation in a sniall floating zone. J. Crystal Growth 69 (1984) 589–604.CrossRefGoogle Scholar
  68. 4.68
    Harriott, G.M.; Brown; R.A.: Flow in a differentially rotated cylindrical drop at moderate Reynolds number. J. Fluid Mech.144 (1984) 403–418.CrossRefGoogle Scholar
  69. 4.69
    Kobayashi, N.; Wilcox, W.R.: Computational studies of convection due to rotation in a cylindrical floating zone. J. Crystal Growth 59 (1982) 616–624.CrossRefGoogle Scholar
  70. 4.70
    Clark, P.A.; Wilcox, W.R.: Influence of gravity on thermocapillary convection in floating zone melting of silicon, J. Crystal Growth 50 (1980) 461–469.CrossRefGoogle Scholar
  71. 4.71
    Chun, Ch.-H: Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection. Acta Astronautic 7 (1980) 479–488.CrossRefGoogle Scholar
  72. Preisser, G.; Schwabe, D.; Scharmann, A.: Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surfaces. J. Fluid Mech. 126 (1982) 545–567CrossRefGoogle Scholar
  73. 4.73
    Schwabe, D.; Preisser, G.; Scharmann, A.: Verification of the oscillatory state of thermocapilary convection in a floating zone under low gravity. Acta Ast. (1982) 9 (1982) 265–273.CrossRefGoogle Scholar
  74. 4.74
    Plateau, J.A.F.: Statique Experimentale et Theoritique des liquides soumis aux seules forces moelcu1 aires. Paris: Gauthier-Villars 1873.Google Scholar
  75. 4.75
    Trinh, E.; Zwern, A.; Wang, T.G.: An experimental study of small-amplitude drop oscillations in immiscible liquid systems. J. Fluid Mech. 115 (1982) 453–474.CrossRefGoogle Scholar
  76. 4.76
    Trinh, E.; Wang, T.G.: Large amplitude free and driven drop shape oscillations: experimental observations. J. Fluid Mech. 122 (1982) 315–338.CrossRefGoogle Scholar
  77. 4.77
    Tsamopoulos, J.A.; Brown, R.A.: Nonlinear oscillations of drops and bubbles. J. Fluid Mech. 127 (1983) 519–537.CrossRefGoogle Scholar
  78. 4.78
    Foote, G.B.: A numerical method for studying simple drop behavior: simple oscillations. J. Computat. Physics 11 (1973) 507–530.CrossRefGoogle Scholar
  79. 4.79
    Alonso, C.T.: The dynamics of colliding and oscillating drops. In Proc. int. colloq. on drops and bubbles. Pasadena: Jet Propulsion Laboratiry 1974.Google Scholar
  80. 4.80
    Benner, R.E.: Equilbria, stability, and bifurcati’ons in fluid physics. Ph.D. Thesis, University of Minnesota 1983.Google Scholar
  81. 4.81
    Jacobi, N.; Croonquist, A.P.; Elieman, D.D.; Wang; T.G.: Acoustically induced oscillation and rotation of a large drop in space. In Proc. 2nd int. colloq. on drops and bubbles. D.H. Le Croissette (ed.) Pasadena: Jet Propulsion Laboratory 1981.Google Scholar
  82. 4.82
    Davis, R.E.; Ray, A.K.; Single aerosol particle size and mass measurements using a electrodynamic balance. J. Colloid Interface Sci. 75 (1980) 566–576.CrossRefGoogle Scholar
  83. 4.83
    Adornato, P.M.; Brown, R.A.: Shape and stability of electrostatically levitated drops. Proc. R. Soc. Lond. A389 (1983) 101–117.CrossRefGoogle Scholar
  84. 4.84
    Rayleigh, J.W.S.: On the equilibrium of liquid conducting masses charged with electricity. Phil. Mag. 14 (1882) 184–186.Google Scholar
  85. 4.85
    Tsamopoulos, J.A.; Akyllas, A.; Brown, R.A.: Dynamics of charged drop breakup. Proc. R. Soc. Lond. (1985) in press.Google Scholar
  86. Lee, M.C.; Feng, I.; Elleman, D.D.; Wang, T.G.; Young, A.T.: Generation of a strong centering force in a submillimeter compound droplet system. In Proc. 2nd int. colloq. on drops and bubbles. D.H. Le Croissette (ed.) Pasadena: Jet Propulsion Laboratory 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • Robert A. Brown
    • 1
  1. 1.Department of Chemical Engineering and Materials Processing CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations