Skip to main content

Fluid Dynamics

  • Chapter
Materials Sciences in Space

Abstract

The essential differences between material sciences experiments in a laboratory on ground and in a microgravity environment result from fluidstatic and fluiddynamic or convective effects. With the numerous implications of fluid physics on topics like casting, separation of immiscible alloys, and crystal growth being discussed in the preceding chapters, this chapter is devoted to the more basic phenomena capillarity, flow mechanics, wetting and spreading, and interface convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langbein, D.: Gleichgewichtsbedingungen und Meniskusformen. In: Proc. Workshop: Flüssigkeitsgrenzflächen und Benetzung, Batteile-Institut Frankfurt/Main (1981) 8–32

    Google Scholar 

  2. Heywang, W.: Zur Stabilität senkrechter Schmelzzonen. Z. Naturforschung IIa (1956) 238

    Google Scholar 

  3. Langbein, D.: Form, Schwingungen und Stabilität von Flüssigkeitsgrenzflächen. Schlußbericht für das BMFT. Battel- le-Institut Frankfurt/Main, Juni 1984

    Google Scholar 

  4. Rayleigh, Lord J.W.S.: On the Capillary Phenomena of Jets. Proc. Roy. Soc. 29 (1879) 71

    Article  Google Scholar 

  5. Erle, M.A.; Gillete, R.D.; Dyson, D.C.: Stability of interfaces of revolution with constant surface tension. The case of the catenoid. Chem. Eng. J. 1 (1970) 97

    Article  Google Scholar 

  6. Gillis, J.: Stability of a column of rotating viscous liquid. Proc. Camb. Phil. Soc. 57 (1961) 152

    Article  Google Scholar 

  7. Carruthers, J.R.: Studies of Liquid Floating Zones on SL-IV, The Third Skylab Mission. Skylab Results, M. P. L. Siebel (Ed.), NASA (1974) 837–856

    Google Scholar 

  8. Carruthers, J.R.; Gibson, E.G.; Klett, M.G.; Facemire, B.R.: Studies of Rotating Liquid Floating Zones on Skylab IV, AIAA-Paper 75–692 (1975)

    Google Scholar 

  9. Padday, J.F.: Fluid Physics in Space. Kodak Ltd. (1983)

    Google Scholar 

  10. Chandrasekar, S.: The stability of a rotating liquid drop. Proc. Roy. Soc. (London) 286 (1965) 1–26

    Article  Google Scholar 

  11. Rayleigh, Lord J.W.S.: The Theory of Sound. Republication of 2nd edition of 1894. Dover, New York, Vol. 2, Chpt.364

    Google Scholar 

  12. Lamb, H.: Hydrodynamics. Cambridge University Press, p. 473–639

    Google Scholar 

  13. Trinh, E.; Zwern, A.; Wang, T.G.: An experimental study of small-amplitude drops oscillations in immiscible liquid systems. J. Fluid Mech. 115 (1982) 953–474

    Article  Google Scholar 

  14. Trinh, E.; Wang, T.G.: Large-amplitude free and driven drop-shape oscillations: experimental observations. J. Fluid Mech. 122 (1982) 315–338

    Article  Google Scholar 

  15. Lee, H.C.: Drop formation in a Liquid Jet. IBM J. Res. Dev. 18 (1974) 364–369

    Article  Google Scholar 

  16. Meseguer, J.: The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130 (1983) 123–151

    Article  Google Scholar 

  17. Rivas, D.; Meseguer, J.: One-dimensional self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 138 (1984) 417–429

    Article  Google Scholar 

  18. Sell, P.J.; Maisch, E.; Renzow, D.: Benetzungskinetik. Statusseminar Spacelab-Nutzung 1981, DGLR-Bericht 81–01, 75–78

    Google Scholar 

  19. Potard, G. : Etudes de base preparatoires de 11 experience de solidification dirigée d’ alliages immiscibles Al-In en fusée sonde. ESA-SP 142 (1979) 255–262

    Google Scholar 

  20. Velarde, M.G.; Normand, Ch. : Convection. Sci. American 243 (1980) 82–108

    Article  Google Scholar 

  21. Preisser, F.; Schwabe, D.; Scharmann, A. : Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 126 (1983) 545–567

    Article  Google Scholar 

  22. Schwabe, D.; Scharmann, A.: Kritische Marangonizahl bei thermokapillarer KonvektionsStrömung. Z. Flugwiss. Weltraumforsch. 9 (1985) 21–28

    Google Scholar 

  23. Chun, Ch.-H.: Verification of turbulence developing from the oscillatory Marangoni convection in a liquid column. ESA-SP 222 (1984) 271–280

    Google Scholar 

  24. Monti R.; Napilitano, L.G.; Mannara, G.: TEXUS flight results on convective flows and heat transfer in simulated floating zones. ESP-SP 222 (1984) 229–236

    Google Scholar 

  25. Schwabe, D.; Scharmann, A.: Thermocapillary Convection in Floating Zones. ESA-SP 222 (1984) 281–289

    Google Scholar 

  26. Young, N.O.; Goldstein, J.S.; Block, M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (1959) 350–356

    Article  Google Scholar 

  27. Langbein, D.; Heide, W.: Entmischung von Flüssigkeiten aufgrund von Grenzflächenkonvektion. ZFW 8 (1984) 192–199

    Google Scholar 

  28. Langbein, D.; Heide, W.: The Separation of Liquids due to Marangoni Convection. Adv. Space Res. 4 (1984) 27–36

    Article  CAS  Google Scholar 

  29. Ahlborn, H.; Löhberg, K.: Influences affecting separation in monotectic alloys under microgravity. ESA-SP 222 (1984) 55–61

    Google Scholar 

  30. Brückner, R.; Christ, H.: TEXUS-8 Experiment: Diffusionsbedingte Grenzflächenkonvektion. Ergebnisbericht für das BMFT, TU Berlin, Januar 1984

    Google Scholar 

  31. Drinkenburg, A.A.H.; Lichtenbelt, J.H.; Hoetink, F.: Marangoni convection and masé transfer from the liquid to the gas phase. StatusseminarfSpacelab-Nutzung 1982, DGLR- Bericht 82–02, p. 61–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Langbein, D. (1986). Fluid Dynamics. In: Feuerbacher, B., Hamacher, H., Naumann, R.J. (eds) Materials Sciences in Space. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82761-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82761-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82763-1

  • Online ISBN: 978-3-642-82761-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics