Binary Systems with Miscibility Gap in the Liquid State

  • Berndt Feuerbacher
  • Hans Hamacher
  • Robert J. Naumann

Summary

Systems with miscibility gap in the liquid state, “immiscibles”, are of fundamental interest and have potential for the preparation of dispersions. The study of these systems and their application has, thus far, been very limited. Under terrestrial conditions the liquid components separate quickly due to sedimentation and buoyancy. Component separation due to nucleation and growth of nuclei and spinodal decomposition can, therefore, not be studied under defined conditions and fine dispersions cannot be prepared. Research under microgravity conditions in orbiting laboratories or under free fall conditions opens new avenues for the study of these systems. This paper summarizes the underlying thermodynamic and physical principles and mechanismes and reviews results of recent experimental investigations.

Keywords

Entropy Migration Convection Mercury Enthalpy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Livingston, J.D., Journal of Applied Physics 39, 8, 3836–3843 (1968)CrossRefGoogle Scholar
  2. 2.
    Mordike, B.L., Z. Metallkunde, 65, 395–396 (1974).Google Scholar
  3. 3.
    Mott, B.W.: “Immiscibility in Liquid Metal Systems”, J. Mat. Sci., 3, 424–435 (1968).CrossRefGoogle Scholar
  4. Gelles, S.H., Markworth, J.: “Microgravity Studies in the Liquid Phase Immiscible System Al-In”. 15th AIAA Conference, Los Angeles, 1977, Paper n° 77–122.Google Scholar
  5. Ahlborn, H., Löhberg, K.: “Aluminium-Indium Experiment SOLUOG — A Sounding Rocket Experiment on Immiscible Alloys”; 17th AIAA Conferene, New Orleans, 1979. AIAA-paper n° 79–0172.Google Scholar
  6. 6.
    Predel B.: Z. Metallkunde 56, 791 (1965)Google Scholar
  7. 7.
    Hilliard, J.E.: “Phase Transformations”; Am. Soc. Metals, Metals Park Ohio, Chapter 12, (1970).Google Scholar
  8. 8.
    Jantzen, C.M., Hermann, H.: “Spinodal Decomposition — Phase Diagram Representation and Occurence”. Academic Press Inc., (1980).Google Scholar
  9. 9.
    Cahn, J.W., Charles, R.J.: Phys. and Chem. of Glasses, 6; 181–191 (1965).Google Scholar
  10. 10.
    Cahn, J.W.: “Phase Separation by Spinodal Decomposition in Isotropic Systems”, J. Chem. Phys., 42, 93–95 (1964).CrossRefGoogle Scholar
  11. Seward III, T.P., Uhlmann, D.R., Turnbull, D: “Development of Two-phase Structures in Glass, with special Reference to the System Bq0-Si02.” American Ceramic Soc., 51 (11), 634–643 (1968).CrossRefGoogle Scholar
  12. 12.
    Predel, B., Arpshofen I.: “Zur Entmischung metallischer Schmelzen unter besonderer Berücksichtigung des Gravitationseinflusses”, Metallwissenschaft und Technik, 34, 5, 412–420 (1980).Google Scholar
  13. 13.
    Turnbull, D., Cech, R.E.: J. Applied Physics 21, 804 (1950).CrossRefGoogle Scholar
  14. 14.
    Spaepen, F.: “Crystal Nucleation and Glass Formation in Metallic Alloy Melts”. Proceedings 5th European Symposium: Materials Sciences under Microgravity, Schloss Elmau FRG, 215 ff, Nov. 1984.Google Scholar
  15. 15.
    Wenzel, J., Limbach, U., Beresonik G., Schneider G.M.: “Kinetics of Phase Separation in Binary Liquid Mixtures”, J. Phys. Chem. 84, 1991–1995, (1980).CrossRefGoogle Scholar
  16. 16.
    Chattopadhyay, K., Ramachandrarao, P.: “Rapid Solidfication and Decomposition of a Hypomonotectic Al-Cd Alloy”, J. Mat. Sci. 15, 685–692 (1980).CrossRefGoogle Scholar
  17. 17.
    Sahm, P.R., Huk, W.: “Wissenschaft und Technologie der unterkühlten Schmelze”, DGM-Hauptversammlung, Aachen (1984).Google Scholar
  18. 18.
    Haller, W.: “Rearrangement Kinetics of the Liquid-Liquid Immiscible Phases in Alkali-Borosilikate Melts”. Acta Met. 9, 656–690 (1961).Google Scholar
  19. Beysens, D.: Stability of Critical Fluid Mixtures: Experimental Simulation of Microgravity Conditions. IAF Conference, Lausanne 1984, IAF paper n° 84–146.Google Scholar
  20. 20.
    Livingstone, J.D., Cline, H.E.: “Monotectic Solidification of Cu-Pb Alloys” Trans. Met. Soc. AIME, 245, 351–357 (1969).Google Scholar
  21. 21.
    Pfefferkorn, R.: “Erstarrung monotektischer Schmelzen”. Diss., Montanuniversität Leoben, Feb. 1981.Google Scholar
  22. Morgand, P., Potard C.: “Immiscible Alloys Experiment aboard Salyut 7: Results and Interpretation of Al-In Emulsions solidified in Microgravity”, 25th COSPAR Conference, Graz, Austria, July 1984.Google Scholar
  23. 23.
    Langbein, D.: “Sounding Rocket Flight Test of an Acoustic Mixer by Manufacture of a Pb-Zn Emulsion Alloy in Microgravity”, ESA-SP-191, 99–104.(1983).Google Scholar
  24. 24.
    Bewersdorff, A., Görler, G.P., Klein, H.: “Teilchentransport in fluiden Medien unter reduzierter Schwere”, Z. Flugwiss. Weltraumforschung, 5, 174–188 (1981).Google Scholar
  25. 25.
    Langbein, D.: “Theoretische Untersuchungen zur Entmischung nicht mischbarer Legierungen”. Battelle-Institut Frankfurt, Report BF-R-64.152–1, June 1980.Google Scholar
  26. Langbein, D.: “On the Separation of Alloys exhibiting a Miscibility Gap”. Proceedings of an RIT/ESA/SSC-Workshop, Järva Krog, Sweden, Jan. 1984. ESA SP-219, 3–13.Google Scholar
  27. Lück, B., Predel, B.: “Thermodynamics of the Decomposition of Liquid Alloys”.; ibid., 13–25.Google Scholar
  28. Fredriksson, H., Space Results on the Solidification of Immiscible Alloys; ibid, 25–36.Google Scholar
  29. Fischmeister, H.F., Kneissl, A., Pfefferkorn, R., Trimmel, W.: Solidification and Ostwald Ripening of Near Monotectic Zn-Pb Alloys — Spacelab Experiment 1 ES 313; ibid, 41–42.Google Scholar
  30. Walter, H.U.: Preparation of Dispersion Alloys — Component Separation during Cooling and Solidification of Dispersions of Immiscible Alloys, ibid, 47–64.Google Scholar
  31. Fischmeister, H.F., Exner, H.E.: Ostwald Ripening, Interfacial Energies and Diffusion Coefficients in Monotectic Systems; ibid. 69–70.Google Scholar
  32. Clancy, P.F., Heide W.: Acoustic Mixing of an Immiscible Alloy (Pb-Zn) in Microgravity; ibid, 73–78.Google Scholar
  33. Potard, C.: Filtration-Theory Approach to Immiscible-Alloys Solidification; ibid, 79–82.Google Scholar
  34. 34.
    Ahlborn, H., Löhberg, K.: “Influences affecting Separation in Monotectic Alloys under Microgravity”. Proceedings of the 5th European Symposium: Materials Sciences under Microgravity. Schloss Elmau, FRG, Nov. 1984, 55–62.Google Scholar
  35. Kneissl, A., Fischmeister, H.: “Particle Coarsening in Immiscible Zinc-Lead Alloys under Microgravity”; ibid, 63–68.Google Scholar
  36. Otto, G.H.: “Stability of Metallic Dispersions”; ibid, 379–388.Google Scholar
  37. Gelles, S.H.: “Space Shuttle Experiments on Al-In Liquid Phase Miscibility Gap Alloys”; ibid, 417–424.Google Scholar
  38. 38.
    Langbein, D., Heide, W.: “Entmischung von Flüssigkeiten aufgrund von Grenzflächenkonvektion”. Z. Flugwissenschaft und Weltraumforschung, 8, 192–199 (1984).Google Scholar
  39. 39.
    Bergman, A., Fredriksson, H.: “A Study of the Coalescence Process inside the Miscibility Gap of Zn-Bi Alloys”. Material processing in the Reduced Gravity Environment of Space. Elsevier Publ. Inc. (1982).Google Scholar
  40. 40.
    Kneissl, A., Fischmeister, H.: “Solidification and Ostwald Ripening of Near-Monotectic Zinc-Lead Alloys”. Science, 225, 198–200 (1984).CrossRefGoogle Scholar
  41. 41.
    Young, N.O., Goldstein, J.S., Block, M.J.: “The Motion of Bubbles in a Vertical Temperature Gradient”, J. Fluid Mechanics, 6, 350–356 (1959).CrossRefGoogle Scholar
  42. 42.
    Langbein, D: “Theoretische Untersuchungen zur Entwicklung nicht mischbarer Legierungen”. Battel le Inst. Frankfurt, Final Report, 01QV-558-AK-SN/A-SLN 7902–9, June 1980.Google Scholar
  43. 43.
    Langbein, D., Heide, W.: “The Separation of Liquids due to Marangoni Convection”. COSPAR Conference, Graz, July 1984. Advances in Space Research, Vol. 4, 5, p. 27–36 (1984).Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1986

Authors and Affiliations

  • Berndt Feuerbacher
    • 1
  • Hans Hamacher
    • 1
  • Robert J. Naumann
    • 2
  1. 1.Institute for Space SimulationDFVLR e.V.Köln 90Germany
  2. 2.Space Science LaboratoryNASA Marshall Space Flight CenterUSA

Personalised recommendations