Earthquake Vibrational Response of Turbo-Machines

  • F. Ziegler
  • H. L. Hasslinger
Conference paper
Part of the IUTAM Symposium book series (IUTAM)

Summary

Substructure synthesis method is employed to the gyroscopic system of a turbo-machine mounted on a table-like foundation. A single-point excitation through a stochastic earthquake process is assumed which is modeled by filtered white noise. The time dependent spectral method is adapted to frequency response functions given in a discrete form. R.m.s.-values of deformations and forces are calculated for spinning and non-spinning rotors, respectively.

Keywords

Convolution Dinates Coord 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clough, R.W.; Penzien,J.: Dynamics of structures. New York: McGraw Hill 1975.MATHGoogle Scholar
  2. 2.
    Newmark, N.M.; Rosenblueth, E.: Fundamentals of earthquake engineering. Englewood Cliffs, N.J.: Prentice-Hall 1971.Google Scholar
  3. 3.
    Höllinger, F.;Ziegler, F.: Nonstationary random vibrations of linear elastic gravity dam with naturally sloped reservoir. (In German) ZAMM 63 (1983) 49–54.CrossRefGoogle Scholar
  4. 4.
    Höllinger, F.: Time-harmonic and nonstationary stochastic vibrations of arch dam-reservoir-systems. Acta Mechanica 49 (1983) 153–167.MATHCrossRefGoogle Scholar
  5. 5.
    Ziegler, F.: Random vibrations of liquid-filled containers (excited by earthquakes). In: Hennig, K.(ed.): Random vibra-tions and reliability. Proc. IUTAM Symposium Frankfurt/Oder 1982. Berlin: Akademie Verlag 1983, 359–367.Google Scholar
  6. 6.
    Hasslinger, H.L.: Oscillatory systems with rotors subjected to earthquake excitation (In German), Dissertation, T.U.Vienna 1982.Google Scholar
  7. 7.
    Magnus, K.: Gyrodynamics. CISM Courses and Lectures No. 53, Udine. Wien, New York: Springer 1974.Google Scholar
  8. 8.
    Hasslinger, H.L.: Substructure synthesis method for gyroscopic systems (In German). ZAMM 65 (1985) T56 - T58.MathSciNetGoogle Scholar
  9. 9.
    Meirovich, L.: A new method of solution of the eigenvalue problem for gyroscopic systems. AIAA 12 (1974) 1337–1342.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ziegler, F.: The elastic-viscoelastic correspondence in case of numerically determined discrete elastic response spectra. ZAMM 63 (1983) T135 - T137.Google Scholar
  11. 11.
    Meirovich, L.; Ryland, G.: Response of slightly damped gyroscopic systems. J. Sound and Vibration 67 (1979) 1–19.ADSCrossRefGoogle Scholar
  12. 12.
    Hasslinger,H.L.: Vibrations of a conservative, gyroscopic system (In German). ZAMM 63 (1983) T53 - T55.MathSciNetGoogle Scholar
  13. 13.
    Priestley, M.B.: Power spectral analysis of non-stationary random processes. J. Sound and Vibration 6 (1967) 86–97.ADSCrossRefGoogle Scholar

Copyright information

© Springer, Berlin Heidelberg 1986

Authors and Affiliations

  • F. Ziegler
    • 1
  • H. L. Hasslinger
    • 2
  1. 1.Department of Civil EngineeringTechnical University of ViennaAustria
  2. 2.HEBAGViennaAustria

Personalised recommendations