Advertisement

Ordered Surfaces: Structure and Diffraction Pattern

Chapter
  • 641 Downloads
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 6)

Abstract

Low-energy electrons can diffract from many assemblies of atoms, including molecules [3.1], liquid surfaces [3.2], and otherwise disordered surfaces [3.3]. However, under the name LEED, this technique has been applied mainly to the study of single-crystal surfaces with a high degree of ordering of the surface atoms, especially as a tool for determining surface structures [3.4]. Therefore we shall be very much concerned with the detailed atomic structure of single-crystal surfaces. This chapter discusses the general properties and the nomenclature of surface structures and their connection with the LEED diffraction pattern that is observed experimentally. In particular, we explore the structural information that the diffraction pattern can provide without consideration of beam intensities.

Keywords

Reciprocal Lattice Reciprocal Space Spot Intensity Miller Index Reciprocal Lattice Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 3.1
    S. Trajmar: Acc. Chem. Res. 13, 14.(1980)CrossRefGoogle Scholar
  2. 3.2
    J. S. Schilling, M. B. Webb: Phys. Rev. B 2, 1665 (1970)CrossRefADSGoogle Scholar
  3. 3.3
    M. Henzler: Appl. Surf Sci. 11/12, 450 (1982)Google Scholar
  4. 3.4
    J. B. Pendry: Low-Energy Electron Diffraction (Academic, London 1974)Google Scholar
  5. M. A. Van Hove, S. Y. Tong: Surface Crystallography by LEED, Springer Ser. Chem. Phys., Vol. 2 (Springer, Berlin, Heidelberg 1979)Google Scholar
  6. 3.5
    International Tables for X-Ray Crystallography (Kynoch, Birmingham, England 1952)Google Scholar
  7. 3.6
    C. Kittel: Introduction to Solid State Physics, 5th ed. (Wiley, New York 1976)Google Scholar
  8. 3.7
    E. A. Wood: Bell Syst. Tech. J. XLIII, 541 (1964)Google Scholar
  9. E. A. Wood: J. Appl. Phys. 35, 1306 (1964)CrossRefADSGoogle Scholar
  10. 3.8
    S. M. Davis, G. A. Somorjai: in Encyclopaedia of Materials Science and Engineering, ed. by M. D. Bever (Pergamon, New York 1982)Google Scholar
  11. G. A. Somorjai: Chemistry in Two Dimensions: Surfaces (Cornell University Press, Ithaca, NY 1981)Google Scholar
  12. 3.9
    J. F. Nicholas: An Atlas of Models of Crystal Surfaces (Gordon and Breach, New York 1965)Google Scholar
  13. 3.10
    B. Lang, R. W. Joyner, G. A. Somorjai: Surf. Sci. 30, 454 (1972)CrossRefADSGoogle Scholar
  14. 3.11
    M. A. Van Hove, G. A. Somorjai: Surf. Sci. 92, 489 (1980)CrossRefGoogle Scholar
  15. 3.12
    A comprehensive list of observed LEED patterns is given in G. A. Somorjai, M. A. Van Hove: Adsorbed Monolayers on Solid Surfaces, Structure and Bonding, Vol. 38 (Springer, Berlin, Heidelberg 1979)Google Scholar
  16. D. G. Castner, G. A. Somorjai: Chem. Rev. 79, 233 (1979)CrossRefGoogle Scholar
  17. 3.13
    M. K. Debe, D. A. King: Phys. Rev. Lett. 39, 708 (1977)CrossRefADSGoogle Scholar
  18. M. K. Debe, D. A. King: J. Phys. C 10, L303 (1977)CrossRefADSGoogle Scholar
  19. 3.14
    D. Dahlgren, J. C. Hemminger: Surf. Sci. 109, L513 (1981)CrossRefGoogle Scholar
  20. 3.15
    M. A. Van Hove, R. J. Koestner, P. C. Stair, J. P. Biberian, L. L. Kesmodel, I. Bartos, G. A. Somorjai: Surf. Sci. 103, 189,218 (1981)Google Scholar
  21. 3.16
    R. L. Park, H. H. Madden: Surf. Sci. 11, 188 (1968)CrossRefADSGoogle Scholar
  22. 3.17
    A. M. Bradshaw, F. M. Hoffmann: Surf. Sci. 72, 513 (1978)CrossRefADSGoogle Scholar
  23. 3.18
    R. J. Behm, K. Christmann, G. Ertl, M. A. Van Hove, P. A. Thiel, W. H. Weinberg: Surf. Sci. 88, L59 (1979)CrossRefGoogle Scholar
  24. R. J. Behm, K. Christmann, G. Ertl, M. A. Van Hove: J. Chem. Phys. 73, 2984 (1980)CrossRefADSGoogle Scholar
  25. 3.19
    D. M. Zehner: private communicationGoogle Scholar
  26. 3.20
    D. G. Fedak, N. A. Gjostein: Surf. Sci. 8, 77 (1967)CrossRefADSGoogle Scholar
  27. 3.21
    M. D. Chinn, S. C. Fain, Jr.: J. Vac. Sci. Technol. 14, 314 (1977)CrossRefADSGoogle Scholar
  28. M. D. Chinn, S. C. Fain, Jr.: Phys. Rev. Lett. 39, 146 (1977)CrossRefADSGoogle Scholar
  29. C. G. Shaw, S. C. Fain, Jr., M. D. Chinn: Phys. Rev. Lett. 41, 955 (1978)CrossRefADSGoogle Scholar
  30. 3.22
    P. H. Holloway, J. B. Hudson: Surf. Sci. 43, 123 (1974)CrossRefADSGoogle Scholar
  31. G. Dalmai-Imelik, J. C. Bertolini, J. Rousseau: Surf. Sci. 63, 67 (1977)CrossRefADSGoogle Scholar
  32. D. F. Mitchell, P. B. Sewell, M. Cohen: Surf. Sci. 61, 355 (1976)CrossRefADSGoogle Scholar
  33. 3.23
    J. E. Houston, R. L. Park: Surf. Sci. 21, 209 (1970)CrossRefADSGoogle Scholar
  34. 3.24
    J. C. Tracy: J. Chem. Phys. 56, 2748 (1972)CrossRefADSGoogle Scholar
  35. J. C. Tracy, P. W. Palmberg: J. Chem. Phys. 51, 4852 (1969)CrossRefADSGoogle Scholar
  36. 3.25
    K. Horn, J. Pritchard: Surf. Sci. 55, 701 (1976)CrossRefADSGoogle Scholar
  37. S. Andersson, Solid State Commun. 21, 75 (1977)CrossRefADSGoogle Scholar
  38. 3.26
    J. P. Biberian, M. A. Van Hove: Surf. Sci. 118, 443 (1982)CrossRefADSGoogle Scholar
  39. H. Ibach, D. L. Mills: Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, New York 1982)Google Scholar
  40. 3.27
    W. P. Ellis: in Optical Transforms, ed. by H. S. Lipton (Academic, New York 1972)Google Scholar
  41. D. G. Fedak, T. E. Fischer, W. D. Robertson: J. Appl. Phys. 39, 5658 (1968)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  1. 1.Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Raychem Corp.Menlo ParkUSA

Personalised recommendations