Advertisement

Surface Organic Reactions Induced by Ion Bombardment

  • R. G. Cooks
  • B.-H. Hsu
  • W. B. Emary
  • W. K. Fife
Part of the Springer Proceedings in Physics book series (SPPHY, volume 9)

Abstract

While chemical reactions, for example cationization, are common in desorption ionization methods,complex bonding processes are not [1–3]. Electron or ion transfer, clustering and fragmentation (often by simple gas phase dissociation) are often involved in ion formation when organic molecules are subjected to particle impact. Inorganic complexes and organometallic compounds often undergo more complex processes, including ligand exchange and other condensed phase behavior [4–5]. MICHL [6] has shown that simple nitrogen oxides in frozen matrices are very reactive upon argon ion bombardment, and several authors have demonstrated that chemical reduction can occur in glycerol under fast atom bombardment conditions [7–11].

Keywords

Magnesium Chloride Pyridinium Salt Intact Cation Neat Compound Freeze Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benninghoven A., Ion Formation, from Organic Solids, Proceedings of the Second International Conference, Munster 1982, A. Benninghoven, ed., Springer-Verlag, Berlin-Heidelberg-New York, 1983.Google Scholar
  2. 2.
    Pachuta S.P., Cooks R.G., ACS Symposium Series 291 (1985), 1.CrossRefGoogle Scholar
  3. 3.
    Busch K.L., Cooks R.G., Walton R.A., Wood K.V., Inorg. Chem. 23 (1984), 4093.CrossRefGoogle Scholar
  4. 4.
    Macfarlane R.D., Ion Formation from Organic Solids, Proceedings of the Second International Conference, Munster 1982, A. Benninghoven, ed., Springer-Verlag, Berlin-Heidelberg-New York, 1983.Google Scholar
  5. 5.
    Miller J.M., Adv. Inorg. Chem. and Radiochem. 28 (1984), 1.CrossRefGoogle Scholar
  6. 6.
    Michl J., Int. J. Mass Spectrom. Ion Phys. 53, 255 (1983).CrossRefGoogle Scholar
  7. 7.
    Clayton E., Wakefield A.J.C., J. Chem. Soc. Chem. Comm. 969 (1984).Google Scholar
  8. 8.
    Pelzer G., DePauw E., Dung D.V., Marien J., J. Phys. Chem. 88, 5065 (1984).CrossRefGoogle Scholar
  9. 9.
    Javanaud C., Eagles J., Org. Mass Spectrom. 18, 93 (1983).CrossRefGoogle Scholar
  10. 10.
    Cerny R.L., Sullivan B.P., Bursey M.M., Meyers T.J., Anal. Chem. 55, 1954 (1983).CrossRefGoogle Scholar
  11. 11.
    Chait B.T., and Field F.H., Proceedings of the 33rd Annual Conference on Mass Spectrometry and Allied Topics, San Diego, CA, pp. 577 (1985).Google Scholar
  12. 12.
    Benninghoven A., Surf. Sci. 35, 427 (1973).CrossRefGoogle Scholar
  13. 13.
    Cooks R.G., Busch K.L., Int. J. Mass Spectrom. Ion Phys. 53, 111 (1983).CrossRefGoogle Scholar
  14. 14.
    Unger S.E., Day R.J., Cooks R.G., Int. Mass Spectrom. Ion Phys. 39, 231 (1981).CrossRefGoogle Scholar
  15. 15.
    Hsu B.H., Xie Y.-X., Busch K.L., Cooks R.G., Int. J. Mass Spectrom. Ion Phys. 51, 225 (1983).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. G. Cooks
    • 1
  • B.-H. Hsu
    • 1
  • W. B. Emary
    • 1
  • W. K. Fife
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryIndiana University-PurdueIndianapolisUSA

Personalised recommendations