Skip to main content

Nonlinear Guided Waves

  • Conference paper
Electromagnetic Surface Excitations

Part of the book series: Springer Series on Wave Phenomena ((SSWAV,volume 3))

Abstract

Since its inception in the 1960s, nonlinear optics has led to a rich variety of wave-mixing interactions that have applications to basic materials research [1–2], to the generation of new frequencies [1], and most recently to all-optical signal processing [3]. In general, nonlinear optical interactions occur whenever the optical fields associated with one or more laser beams propagating in a material are large enough to produce polarization fields proportional to the product of two or more of the incident fields. These nonlinear polarization fields radiate electric fields at the nonlinear frequency. For some interactions, the generated fields grow linearly with propagation distance under optimum conditions of phase-matching. Typically, the efficiency of any nonlinear optical interaction depends on (1) the product of the power densities of the input and output waves, raised to some power, and (2) the interaction distance raised to some power greater than or equal to unity. Since power density is power per unit area, the efficiency of any nonlinear interaction can be enhanced by reducing the cross-sectional area of the interacting beams. For plane waves this can be achieved by focusing with a lens. There is a tradeoff, of course, because the high power density can be maintained only over the depth of focus of the lens, which limits the effective interaction length.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. R. Shen, The Principles of Nonlinear Optics ( Wiley, New York, 1984 ).

    Google Scholar 

  2. M.D. Levenson, Introduction To Nonlinear Laser Spectroscopy, ( Academic Press, New York, 1982 ).

    Google Scholar 

  3. Reviewed in the book Optical Phase Conjugation, R.A. Fisher, ed. (Academic Press, New York, 1982).

    Google Scholar 

  4. P.K. Tien, Rev. Mod. Phys. 49, 361 (1977).

    Google Scholar 

  5. In Surface Polaritons, Electromagnetic Waves at Surfaces and Interfaces, V.M. Agranovich and D.L. Mills, eds. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  6. W. Sohler, in New Directions in Guided Wave and Coherent Optics, D.B. Ostrowsky, ed. ( Plenum Press, New York, 1983 ).

    Google Scholar 

  7. C.T. Seat on, G.I. Stege man, W.M. Hetherington III and H.G. Winful, in Integrated Optics, H.P. Nolting and R. Ulrich, eds. ( Springer-Verlag, New York, 1985 ) p. 178.

    Google Scholar 

  8. H. Kogelnik, Integrated Optics, Vol 7 of Topics in Applied Physics, T. Tamir, ed. ( Springer-Verlag, Berlin, 1975 ), p. 66.

    Google Scholar 

  9. D. Marcuse, Theory of Dielectric Optical Waveguides, ( Academic Press, New York, 1974 ).

    Google Scholar 

  10. J.E. Sipe and G.I. Stegeman, in Surface Polaritons, D.L. Mills and V.N. Agranovich, eds., ( North-Holland, New York, 1982 ), p. 661.

    Google Scholar 

  11. N. Uesugi, Appi. Phys. Lett. 36, 178 (1980).

    Google Scholar 

  12. J.P. van der Ziel, M. Ilegems, P.W. Foy, and R.M. Mikulyak, Appi. Phys. Lett. 29, 775 (1976).

    Article  Google Scholar 

  13. H. Ito and H. Inaba, Opt. Lett. 29 139 (1978).

    Google Scholar 

  14. Y. Suematsu, Y. Sasaki, K. Furuya, K. Shibata, and S. Ibukuro, IEEE J. Quant. Electron. H), 222 (1974).

    Google Scholar 

  15. G.H., Hewig and K. Jain, Optics Commun. 47, 347 (1983).

    Google Scholar 

  16. K. Sasaki, T. Kinoshita, and N. Karasawa, Appi. Phys. Lett. 45, 333 (1984).

    Google Scholar 

  17. R.V. Schmidt and I.P. Kaminow, Appi. Phys. Lett. 25, 458 (1974).

    Google Scholar 

  18. N. Uesugi and T. Kimura, Appi. Phys. Lett. 29, 572 (1976).

    Google Scholar 

  19. W. Sohler and H. Suche, Appi. Phys. Lett. 33, 518 (1978).

    Google Scholar 

  20. W. Sohler and H. Suche, in Integrated Optics III, L.D. Hutcheson and D.G. Hall, eds., Proc. SPIE 408, 163 (1983).

    Google Scholar 

  21. R. Normandin and G.I. Stegeman, Opt. Lett. 4, 58 (1979).

    Google Scholar 

  22. R. Normandin and G.I. Stegeman, Appi. Phys. Lett. 40, 759 (1982).

    Google Scholar 

  23. N. Uesugi, K. Daikoku, and M. Fukuma, J. Appi. Phys. 49, 4945 (1978).

    Google Scholar 

  24. A.T. Reutov and P. P. Tarashchenko, Opt. Spectrosc. 37, 447 (1974).

    Google Scholar 

  25. C. Karaguleff and G.I. Stegeman, IEEE J. Quant. Electron. QE-20, 716 (1984).

    Article  Google Scholar 

  26. C. Karaguleff, G.I. Stegeman, R. Zanoni, and C.T. Seaton, Appi. Phys. Lett. 37 621 (1985).

    Google Scholar 

  27. G.I. Stegeman, J. Opt. Commun. 4, 20 (1983).

    Article  Google Scholar 

  28. G.I. Stegeman, R. Fortenberry, C. Karaguleff, R. Moshrefzadeh, W.M. Hetherington III, N.E. Van Wyck, and J.E. Sipe, Opt. Lett. 8, 295 (1983).

    Google Scholar 

  29. W.M. Hetherington III, N.E. Van Wyck, E.W. Koening, G.I. Stegeman, and R.M. Fortenberry, Opt. Lett. 9, 88 (1984).

    Google Scholar 

  30. P.D. Maker and R. Terhune, Phys. Rev. 137, A801 (1964).

    Google Scholar 

  31. G.I. Stegeman, IEEE J. Quant. Electron. QE-18, 1610 (1982).

    Article  Google Scholar 

  32. A.E. Kaplan, Sov. Phys. JETP 45, 896 (1977).

    Google Scholar 

  33. A.E. Kaplan, IEEE J. Quant. Electron. QE-17, 336 (1981).

    Google Scholar 

  34. A.A. Maradudin, in Optical and Acoustic Waves in Solids-Modern Topics, M. Borissov, ed. ( World Scientific Publ., Singapore, 1983 ), p. 72.

    Google Scholar 

  35. W.J. Tomlinson, Opt. Lett. 5, 323 (1980).

    Google Scholar 

  36. J. Ariyasu, C.T. Seaton, G.I. Stegeman, A.A. Maradudin, and R.F. Wallis, J. Appl. Phys., in press.

    Google Scholar 

  37. V.M. Agranovich, V.S. Babichenko, and V.Ya. Chernyak, Sov. Phys. JETP Lett. 32, 512 (1981).

    Google Scholar 

  38. C.T. Seaton, J.D. Valera, B. Svenson, and G.I. Stegeman, Opt. Lett. 10, 149 (1985).

    Google Scholar 

  39. N.N. Akhemediev, Sov. Phys. JETP 56, 299 (1982).

    Google Scholar 

  40. A.D. Boardman and P. Egan, J. Physique Colloq. C5, 291 (1984).

    Google Scholar 

  41. F. Fedyanin and D. Mihalache, Z. Physik B 47, 167 (1982).

    Google Scholar 

  42. F. Lederer, U. Langbein, and H.-E. Ponath, Appl. Phys. B 31, 69 (1983).

    Google Scholar 

  43. G.I. Stegeman, C.T. Seaton, J. Chilwell, and S.D. Smith, Appl. Phys. Lett. 44, 830 (1984).

    Google Scholar 

  44. H. Vach, C.T. Seaton, G.I. Stegeman, and I.C. Khoo, Opt. Lett. 9 238

    Google Scholar 

  45. I. Bennion, M.J. Goodwin, and W.J. Stewart, Electron. Lett. 21, 41 (1985).

    Google Scholar 

  46. C.T. Seaton, Xu Mai, G.I. Stegeman, and H.G. Winful, Opt. Eng. 24, 593 (1985).

    Google Scholar 

  47. A.D. Boardman and P. Egan, IEEE J. Quant. Electron., in press.

    Google Scholar 

  48. A. Boardman and P. Egan, Phil. Trans. Roy. Soc. London A313, 363 (1984).

    Google Scholar 

  49. C.T. Seaton, J.D. Valera, R.L. Shoemaker, G.I. Stegeman, J. Chilwell, and S.D. Smith, IEEE J. Quantum Electron. QE-21, 774 (1985).

    Google Scholar 

  50. N.N. Akhemediev, K.O. Boltar and V.M. Eleonskii, Opt. Spektrosk. 53, 906 and 1097 (1982).

    Google Scholar 

  51. V.K. Fedyanin and D. Mihalache, Z. Phys. B 47, 167, (1984).

    Article  Google Scholar 

  52. U. Langbein, F. Lederer, and H.E. Ponath, Opt. Commun. 46, 167 (1983).

    Article  Google Scholar 

  53. A.D. Boardman and P. Egan, IEEE J. Quant. Electron., in press.

    Google Scholar 

  54. C. Liao, G.I. Stegeman, C.T. Seaton, R.L. Shoemaker, J.D. Valera, and H.G. Winful, J. Opt. Soc. Am. A 2, 590 (1985).

    Google Scholar 

  55. J.D. Valera, C.T. Seaton, G.I. Stegeman, R.L. Shoemaker, Xu Mai, and C. Liao, Appl. Phys. Lett. 45, 1013 (1984).

    Article  CAS  Google Scholar 

  56. H.G. Winful, J.H. Marburger, and E. Garmire, Appl. Phys. Lett. 35, 379 (1979).

    Article  CAS  Google Scholar 

  57. G.I. Stegeman, C. Liao, and H.G. Winful, in Optical Bistability II, C.M. Bowden, H.M. Gibbs, and S.L.McCall, eds. ( Plenum Press, New York, 1984 ) p. 389.

    Google Scholar 

  58. S.M. Jensen, IEEE J. Quant. Electron. QE-18, 1580 (1982).

    Google Scholar 

  59. A. Lattes, H.A. Haus, F.J. Leonberger, and E.P. Ippen, IEEE J. Quant. Electron. QE-19, 1718 (1983).

    Google Scholar 

  60. P. Li Kam Wa, J.E. Sitch, N.J. Mason, J.S. Roberts, and P.N. Robson, Electron. Lett. 21, 26 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stegeman, G.I., Seaton, C.T., Hetherington, W.M., Boardman, A.D., Egan, P. (1986). Nonlinear Guided Waves. In: Wallis, R.F., Stegeman, G.I., Tamir, T. (eds) Electromagnetic Surface Excitations. Springer Series on Wave Phenomena, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82715-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82715-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82717-4

  • Online ISBN: 978-3-642-82715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics