Energy-Transfer Kinetics in Phycobilisomes

  • A. R. Holzwarth
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 42)


Blue-green alga (cyanobacteria) , red alga and cryptophyceae contain phycobiliproteins as major light-harvesting pigments which gather light in the wavelength region of low Chl absorption. The chromophores in these pigments are open chain tetrapyrroles which are bound covalently to apoproteins [1]. It has been shown that the energy absorbed by phycobiliproteins feeds the small pool of Chl in these algae [2]. In cyanobacteria and red alga the phycobiliproteins form large supramolecular antenna complexes, so-called phycobilisomes (PBS) [3, 4] which are located at the outer surface of the thylakoid membrane. PBS are made up of two or three different types of phycobiliproteins which occur predominantly in hexameric aggregation. The first picosecond measurements of phycobiliprotein containing algae and isolated PBS were carried out by Porter et al. [5, 6]. Phycobiliproteins and PBS are interesting objects for time-resolved studies for several reasons. Unlike the Chl protein complexes of higher plants, different phycobiliproteins have their absorption and emission spectra fairly well separated, which more easily allows the detailed sequence of energy-transfer steps to be explored. Furthermore, the single-step transfer times seem to be significantly longer than those of Chl complexes, which puts these processes in a time-range accessible to picosecond techniques.


Anisotropy Decay Irreversible Transfer Terminal Emitter Hexameric Aggregation Picosecond Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scheer, H., (1982) in Molecular Biology Biochemistry and Biophysics 35, 7–45, Springer Verlag, BerlinGoogle Scholar
  2. 2.
    Wang, R.T., Stevens, C.L.R., and Myers, J., (1977) Photochem. Photobiol. 25 103–108.CrossRefGoogle Scholar
  3. 3.
    Wehrmeyer, W., (1983) in Photosynthetic Prokaryotes, pp. 1–22. Elsevier; Amsterdam, New YorkGoogle Scholar
  4. 4.
    Glazer, A.N., (1984) Biochim. Biophys. Acta 768, 29–51.Google Scholar
  5. 5.
    Porter, G., Tredwell, C.J., Searle, G.F.W., and Barber, J., (1978) Biochim. Biophys. Acta 501, 232–245.CrossRefGoogle Scholar
  6. 6.
    Searle, G.F.W., Barber, J., Porter, G., and Tredwell, C.J., (1978) Biochim. Biophys. Acta 501, 246–256.CrossRefGoogle Scholar
  7. 7.
    Koller, K.P., Wehrmeyer, W., and Schneider, H., (1977) Arch. Microbiol. 112 61–67.CrossRefGoogle Scholar
  8. 8.
    Glazer, A.N., (9182) Ann. Rev. Microbiol. 36 173–198.CrossRefGoogle Scholar
  9. 9.
    Gantt, E. and Lipschultz, C.A., (1973) Biochim. Biophys. Acta 292, 858–861.CrossRefGoogle Scholar
  10. 10.
    Glazer, A.N., Lundell, D.J., Yamanaka, G., and Williams, R.C., (1983) Ann. Microbiol. 8134 159–180.Google Scholar
  11. 11.
    Gillbro, T., Sandström, A., Sundström, V., and Holzwarth, A.R., (1983) FEBS Letters 162, 64–68.CrossRefGoogle Scholar
  12. 12.
    Suter, G.W., Mazzola, P., Wendler, J., and Holzwarth, A.R., (1984) Biochim. Biophys. Acta 766, 269–276.CrossRefGoogle Scholar
  13. 13.
    Gillbro, T., Sandström, A., Sundström, V., Wendler, J., and Holzwarth, A.R., (1985) Biochim. Biophys. Acta 808, 52–65.CrossRefGoogle Scholar
  14. 14.
    Wendler, J., Holzwarth, A.R., and Wehrmeyer, W., (1984) Biochim. Biophys. Acta 765, 58–67.CrossRefGoogle Scholar
  15. 15.
    Mimuro, M., Yamazaki, T., Yamazaki, I., and Fujita, Y., (1985) Photochem. Photobiol. in print.Google Scholar
  16. 16.
    Montroll, E.W., (1969) J. Math. Phys. 10 753–765.ADSCrossRefGoogle Scholar
  17. 17.
    Glazer, A.N., Yeh, S.W., Webb, S.P., and Clark, J.H., (1985) Science 221, 419–423.ADSCrossRefGoogle Scholar
  18. 18.
    Pearlstein, R.M., (1982) Photochem. Photobiol. 35 835–844.CrossRefGoogle Scholar
  19. 19.
    Yamazaki, I., Mimuro, M., Murao, T., Yamazaki, T., Yoshihara, K., and Fujita, Y., (1984) Photochem. Photobiol. 39 233–240.CrossRefGoogle Scholar
  20. 20.
    Holzwarth, A.R., Wendler, J., and Wehrmeyer, W., (1982) Photochem. Photobiol. 36 479–487.CrossRefGoogle Scholar
  21. 21.
    Förster, T., (1949) Z. Naturforsch. 4A, 321–327.ADSGoogle Scholar
  22. 22.
    Blumen, A., and Zumofen, G., (1982) J. Chem. Phys. 77 5127–5140.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Zumofen, G. and Blumen, A., (1983) Chem. Phys. Lett. 98 393–397.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • A. R. Holzwarth
    • 1
  1. 1.Max-Planck-Institut für StrahlenchemieMülheim/RuhrGermany

Personalised recommendations