Spin Dipolar Interactions of Radical Pairs in Photosynthetic Reaction Centers

  • A. Ogrodnik
  • W. Lersch
  • M. E. Michel-Beyerle
  • J. Deisenhofer
  • H. Michel
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 42)

Abstract

The optical detection of recombination dynamics and its dependence on external magnetic fields gives access to kinetic and structural features of short-lived radical pairs (RPs) In reaction centers (RCs) of purple bacteria this RP consists of the cation of the bacteriochlorophyll dimer, (BC)+2 and the anion of the bacteriopheophytin, BPand is formed within a few picoseconds by electron-transfer from the singlet excited dimer state. In quinone-depleted RCs at room temperature the RP is stabilized for approximately 10 ns. The initially formed RP is singlet-phased as its precursor state and recombines via the rate ks to form the ground state species. This is illustrated in the following kinetic scheme: Hyperfine interaction HFI of the two electron spins with their different nuclear spin environments can change the multiplicity of the RP spin state. This leads to a RP triplet state,thus providing a new channel of recombination forming the dimer triplet state with the rate kT . Such singlet-triplet transitions,however, can be hindered by exchange and spin dipolar interaction (J and D) between the radical electrons as well as by the recombination rates, which are responsible for the lifetime broadening of the RP states.

Keywords

Microwave Anisotropy Recombination Quinone Reso 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    Lersch VI., M.E. Michel-Beyerle. 1983. Chem.Phys.Lett. 78 115Google Scholar
  2. /2/.
    Ogrodnik A., H.W. Krüger, H. Orthuber, R. Haberkorn, M.E. Michel-Beyerle, H. Scheer. 1982. Biophys.J. 39 91CrossRefGoogle Scholar
  3. /3/.
    Norris J.R., M.K. Bowman, D.E. Budil, J. Tang, C.A. Wraight, G.L. Closs. 1982. Proc. Natl. Acad. Sci. USA 79; 5532ADSCrossRefGoogle Scholar
  4. /4/.
    Chidsey C.E.D., C. Kirmaier, D. Holten, S. Boxer. 1984. Biochim. Biophys.Acta 763: 424Google Scholar
  5. /5/.
    Lersch W., A. Ogrodnik, M.E. Michel-Beyerle. in: Photochemistry and Photobiology ed. A.H. Zewail. Vol 2 p.986. Harwood academic publishers. 1983.Google Scholar
  6. /6/.
    Deisenhofer J., O. Epp, K. Miki, R. Huber, H. Michel. 1982. J.Mol.Biol. 180 385CrossRefGoogle Scholar
  7. /7/.
    Carrington A., A.D. McLachlan. Introduction to Magnetic Resonance. p.116. Chapman and Hall, 1980.Google Scholar
  8. /8/.
    Lendzian F., Thesis 1982. Freie Universität BerlinGoogle Scholar
  9. /9/.
    Petke J.D., G.M. Maggiora, L.L. Shipman, R.E. Christoffersen. 1981. Photochem.Photobiol. 31 243CrossRefGoogle Scholar
  10. /10/.
    Petke J.D., G.M. Maggiora, L.L. Shipman, R.E. Christoffersen. Photochem.Photobiol. 33 663Google Scholar
  11. /11/.
    Petke J.D., G.M. Maggiora, L.L. Shipman, R.E. Christoffersen. Photochem.Photobiol. 32 661Google Scholar
  12. /12/.
    Matsunaga Y., 1960. Bull. Chem.Soc.Jap. 33 1436CrossRefGoogle Scholar
  13. /13/.
    Okamura M.Y., R.A. Isaacson, G. Feher. 1979. Biochim.Biophys.Acta 546: 394CrossRefGoogle Scholar
  14. /14/.
    Boxer S.G., C.E.D. Chidsey, M.G. Roelofs. 1982. Proc.Nat.Acad.Sci. USA 79: 4632ADSCrossRefGoogle Scholar
  15. /15/.
    Lersch W., Diplomarbeit 1983. Technische Universität MünchenGoogle Scholar
  16. /16/.
    Haberkorn R., M.E. Michel-Beyerle. 1979. Biophys.J. 26 489CrossRefGoogle Scholar
  17. /17/.
    Ogrodnik A. 1983. Thesis. Technische Universität München.Google Scholar
  18. /18/.
    Lersch W., M.E. Michel-Beyerle. 1984. Chem.Phys.Lett. 107 522ADSCrossRefGoogle Scholar
  19. /19/.
    Haberkorn R., M.E. Michel-Beyerle, R.A. Marcus. 1979. Proc.Nat. Acad.Sci.USA 76: 4185ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • A. Ogrodnik
    • 1
  • W. Lersch
    • 1
  • M. E. Michel-Beyerle
    • 1
  • J. Deisenhofer
    • 2
  • H. Michel
    • 2
  1. 1.Institut für Physikalische und Theoretische ChemieTechnische Universität MünchenGarchingGermany
  2. 2.Max-Planck-Institut für BiochemieMartinsriedGermany

Personalised recommendations