Skip to main content

Wave Climate and the Wave Power Resource

  • Conference paper

Summary

Wave climate statistics are reviewed from the wave power engineer’s point of view. It is emphasised that there is no fixed answer to the question “What do we need to know about the wave power resource ?” but rather a feedback loop between our knowledge and the development of any particular type of wave power device.

The mean power available averages over 40 MW/km along the best oceanic coasts, such as those of western Europe; of which at least 50% is potentially economically extractable. The total resource worldwide is roughly equal to present world electricity consumption. (Electricity is not the only possible use; direct use of wave power may also be attractive, for instance for desalination.)

Current interest is more in small scale devices, perhaps 10 to 30 metres wide, which enjoy a number of advantages, including the ‘point absorber effect’, whereby they have an effective capture width considerably greater than their physical width. Mean outputs of 1 to 2 MW should be feasible, and even devices with outputs as low as 100 kW may be economically attractive.

The outstanding data requirement is for better information on directional spectra, for specific analyses of device performance and survival rather than for power output estimates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagnold, R.A.: Motion of waves in shallow water: interaction between waves and sand bottoms. Proc. R. Soc. Lond. A 187 (1946) 1–15.

    Article  ADS  Google Scholar 

  2. Bartholomew, J.G.; Herbertson, A.J.: Bartholomew’s Physical Atlas, Vol. 3: Atlas of Meteorology. Bartholomew, Edinburgh, 1899.

    Google Scholar 

  3. Battan, L.J.: Fundamentals of Meteorology. Prentice-Hall, Englewood Cliffs, N.J., 1979.

    Google Scholar 

  4. Bryden, Ian: Long floating cylinders in three-dimensional random seas. Ph.D. Thesis, Univ. of Edinburgh, 1983.

    Google Scholar 

  5. Chapman, W.M.: The law of the sea and public policy. In Ocean Engineering: goals, environment, technology (ed: Brahtz, J.F. ), Wiley, New York, 1968, 112–156.

    Google Scholar 

  6. Count, Brian: Power from Sea Waves. Academic Press, London, 1980.

    Google Scholar 

  7. Crabb, John: Wave power levels to the west of the Hebrides. UK Dept. of Energy, WESC (78) DA 64b, 1978.

    Google Scholar 

  8. Crabb, John: Synthesis of a directional wave climate. In Count 6, 41–74.

    Google Scholar 

  9. Crabb, John: Assessment of wave power available at key UK sites. Inst. of Oceanogr. Sci. Report no. 186, 1984.

    Google Scholar 

  10. Crapper, G.D.: Introduction to Water Waves. Ellis Horwood, Chichester, 1984.

    Google Scholar 

  11. Ephraums, J.J.; Ewing, J.A.; Golding, B.W.; Worthington, B.A.: Comparisons of the Met Office and NORSWAM wave models with measured wave data collected during March 1980. UK Dept. of Energy, WESC (81) DA 130, 1981.

    Google Scholar 

  12. Evans, D.V.: Some theoretical aspects of three dimensional wave-energy absorbers. Proc. Symp. Ocean Wave Energy Utilization. Gothenburg, 1979, 77–113.

    Google Scholar 

  13. Ewing, J.A.: Some results from the joint North Sea wave project of interest to engineers. Marine Vehicles, 1974, 41–46.

    Google Scholar 

  14. Glendenning, I.: Wave energy. CEGB (Marchwood) Report, 1976(?).

    Google Scholar 

  15. Golding, Brian: Computer calculations of waves from wind fields. In Count 6, 115–134.

    Google Scholar 

  16. Hagerman, G.M.: Oceanographic design criteria and site selection for ocean wave energy conversion. (This volume)

    Google Scholar 

  17. Hasselmann, K.: On the nonlinear energy transfer in a gravity-wave spectrum. 1. General theory. J. Fluid Mech. 12 (1962) 481–500.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Hasselmann, K.: On the nonlinear energy transfer in a gravity-wave spectrum. 2. Conservation laws, wave-particle correspondence, irreversibility. J. Fluid Mech. 15 (1963) 273–281.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Hasselmann, K.; Barnett, T.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Ewing, J.A; Glenapp, H.; Hasselmann, D.E.; Kruseman, P.; Meerburg, A.; Muller, P.; Olbers, D.J.; Richter, K.; Sell, W.; Walden, H.: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. A8, 12 (1973) 1–95.

    Google Scholar 

  20. Hogben, N.; Lumb, F.E.: Ocean Wave Statistics. H.M.S.O., London, 1967.

    Google Scholar 

  21. Jefferys, E.R.: Directional seas should be ergodic. (Submitted for publication)

    Google Scholar 

  22. Jeffrey, D.C.; Keller, G.J.; Mollison, D.; Richmond, D.J.E.; Salter, S.H.; Taylor, J.R.M.; Young, I.A.: Edinburgh Wave Power Project Fourth Year Report, Vol. 3, 1978.

    Google Scholar 

  23. LeBlond, P.H.; Mysak, L.A.: Waves in the Ocean. Elsevier, Amsterdam, 1978.

    Google Scholar 

  24. Lipman, N.H.; Musgrove, P.J.; Pontin, G.W.W. (eds.): Wind Energy in the Eighties. Peregrinus, Stevenage, 1982.

    Google Scholar 

  25. Longuet-Higgins, M.S.: Statistical properties of wave groups in a random sea state. Phil. Trans. R. Soc. Lond. A 312 (1984) 219–250.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Longuet-Higgins, M.S.; Cartwright, D.E.; Smith, N.D.: Observations of the directional spectrum of sea waves using the motions of a floating buoy. In Ocean Wave Spectra. Natl. Acad. Sci., 1963, 111–136.

    Google Scholar 

  27. Malmo, O.; Reitan, A.: Development of the Kvaerner multiresonant OWC. (This volume)

    Google Scholar 

  28. Mehlum, Even: Tapered channel wave power plants. (This volume)

    Google Scholar 

  29. Mehlum, Even: Wavetrack. Norwave AS, Forskningsvn I, Blindern, Oslo 3, Norway (No date).

    Google Scholar 

  30. Mitsuyasu, H.: Observations of the directional spectrum of ocean waves using a cloverleaf buoy. J. Phys. Oceanogr. 5 (1975) 750–760.

    Article  ADS  Google Scholar 

  31. Mollison, Denis: The prediction of device performance. In Count [6], 135–172.

    Google Scholar 

  32. Mollison, Denis: Ireland’s Wave Power Resource. Natl. Board for Sci. and Tech., Dublin, 1982.

    Google Scholar 

  33. Mollison, Denis: Wave energy losses in intermediate depths. Appl. Ocean Res. 5 (1983) 234–237.

    Article  Google Scholar 

  34. Mollison, Denis; Buneman, O.P.; Salter, S.H.: Wave power availability in the NE Atlantic. Nature 263 (1976) 223–226.

    Article  ADS  Google Scholar 

  35. Moskowitz, L.: Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots. J. Geophys. Res. 69 (1964) 5161–5180.

    Article  ADS  Google Scholar 

  36. Phillips, O.M.: The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid Mech. 4 (1958) 426–434.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Pierson, W.J.: The interpretation of wave spectrums in terms of the wind profile instead of the wind measured at a constant height. J. Geophys. Res. 69 (1964) 5191–5203.

    Article  ADS  Google Scholar 

  38. Pierson, W.J.: Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res. 69 (1964) 5181–5190.

    Google Scholar 

  39. Pires, H.N.O.; Pessanha, L.E.V.: Wave power climate of Portugal. (This volume)

    Google Scholar 

  40. Pond, S.; Pickard, G.L.: Introductory Dynamic Oceanography. Pergamon, Oxford, 1978.

    Google Scholar 

  41. Pontes, M.T.; Perdigao, J.N.A.: Wave power resource in Portugal. (This volume)

    Google Scholar 

  42. Salter, S.H.: Physical modelling of directional seas. Proc. Symp. on Description and Modelling of Directional Seas, Copenhagen, 1984, 81–89.

    Google Scholar 

  43. Salter, S.H.: Progress on Edinburgh Ducks. (This volume)

    Google Scholar 

  44. Salter, S.H.: Wave power desalination. Proc. 4th Conf. on Energy for Rural and Island Communities, Inverness. Pergamon. (To appear)

    Google Scholar 

  45. Shearman, E.D.R.: Radio science and oceanography. Radio Science 18 (1983) 299–320.

    Article  ADS  Google Scholar 

  46. Shemdin, O.; Hasselmann, K.; Hsiao, S.V.; Herterich, K.: Nonlinear and linear bottom interaction effects in shallow water. In Turbulent Fluxes Through the Sea Surface, Wave Dynamics and Prediction ( Favre, A. and Hasselmann, K., eds.), Plenum Press, New York, 1978, 347–372.

    Google Scholar 

  47. Snodgrass, F.E.; Groves, G.W.; Hasselman, K.F.; Miller, G.R.; Munk, W.H.; Powers, W.M.: Propagation of ocean swell across the Pacific. Phil. Trans. R. Soc. Lond. A 259 (1966) 431–497.

    Article  ADS  Google Scholar 

  48. Tucker, M.J: Observation of ocean waves (with discussion). In The Study of the Ocean and the Land Surface from Satellites ( Houghton, J.S., Cook, Alan H., and Charnock, H., eds.), Royal Society, London, 1983, 129–138.

    Google Scholar 

  49. Tucker, M,J; Challenor, P.G; Carter, D.J.T: Numerical simulation of a random sea: a common error and its effect upon wave group statistics. Appl. Ocean Res. 6 (1984) 118–122.

    Article  Google Scholar 

  50. Vitale, P: Sand bed friction factors for oscillatory flows. Proc. ASCE 105 (WW3) (1979) 229–245.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Mollison, D. (1986). Wave Climate and the Wave Power Resource. In: Evans, D.V., de Falcão, A.F.O. (eds) Hydrodynamics of Ocean Wave-Energy Utilization. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82666-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82666-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82668-9

  • Online ISBN: 978-3-642-82666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics