Skip to main content

The Hydrodynamic Efficiency of Wave-Energy Devices

  • Conference paper
Hydrodynamics of Ocean Wave-Energy Utilization
  • 571 Accesses

Summary

A description is given of theories leading to expressions for the mean power which can be extracted by one or more devices absorbing energy from a long-crested monochromatic wave. Extensions to constrained motions and various approximate methods are described and comparisons with more accurate numerical methods or experimental results made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCormick, M.E.: Analysis of a wave energy conversion buoy. J. Hydronautics 8 (1974) 77–82.

    Article  Google Scholar 

  2. Salter, S.H.: Wave power. Nature 249 (1974) 220–84.

    Google Scholar 

  3. Pierson, W.S.; Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodski. J. Geophys. Res. 69 (1964) 581–90.

    Google Scholar 

  4. Cockerell, C.; Platts, M.J.; Comyns-Carr, R.: The development of the wave-contouring raft. 1978 Proc. Wave Energy Conference. London-Heathrow, H.M.S.O. London, ed. P. Quarrell.

    Google Scholar 

  5. Hagen, G.: U.S. patent application No.4077213, Official Gazette, U.S. Patent and Trademark Office, March 7, 1978, filed Feb. 13, 1976.

    Google Scholar 

  6. Masuda, Y.: Experimental full scale result of wave power machine KAIMEI in 1978. Proc. First Symp. on wave energy utilisation, Gothenburg, Sweden 1979.

    Google Scholar 

  7. Faines, J.; McIver, P.: Wave interaction with oscillating bodies and water columns. Paper presented at this Symposium 1985.

    Google Scholar 

  8. Shaw, R.: Wave energy — a design challenge. Ellis Horwood, p 49, 1982.

    Google Scholar 

  9. Count, B.M.: The theoretical analysis of wave power devices with nonlinear mechanical conditioning. CEGB Marchwood Rep.No.R/M/N1008, 1978.

    Google Scholar 

  10. Sarmento, A.J.N.A.; Falcao, A.F. de O.: Wave generation by an oscillating surface-pressure and its application in wave-energy extraction. J. Fluid Mechanics 150 (1985) 467–485.

    Article  MATH  ADS  Google Scholar 

  11. Newman, J.N.: The interaction of stationary vessels with regular waves. Proc. 11th Symp. Naval Hydrodynamics, London (1976) 491–501.

    Google Scholar 

  12. Mei, C.E.: Power extraction from water waves. J. Ship Research 20 (1976) 63–66.

    ADS  Google Scholar 

  13. Evans, D.V.: A theory for wave-power absorption by oscillating bodies. J. Fluid Mechanics 77 (1976) 1–25.

    Article  MATH  ADS  Google Scholar 

  14. Count, B.M.: On the physics of absorbing energy from ocean waves. Ph.D. thesis, Dept. of Physics, University of Exeter 1982.

    Google Scholar 

  15. Faines, J.: Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves. Applied Ocean Research 2 (1980) 75–80.

    Article  Google Scholar 

  16. Evans, D.V.: Some analytic results for two and three dimensional wave energy absorbers, in Power from Sea Waves ed. B. Count, London/NY, Academic (1980) 213–250.

    Google Scholar 

  17. Clare, R.; Evans, D.V.; Shaw, T.L.: Harnessing sea wave energy by a submerged cylinder device. Proc. Instn. Civ. Engns. Part 2, 73 (1982) 565–585.

    Article  Google Scholar 

  18. Ogilvie, T.F.: First-and second-order forces on a cylinder submerged under the free surface. J. Fluid Mechanics 16 (1963) 451–72.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Evans, D.V.; Jeffrey, D.C.; Salter, S.H.; Taylor, J.R.M.: Submerged cylinder wave-energy device: theory and experiment. Applied Ocean Research 1 (1979) 3–12.

    Article  Google Scholar 

  20. Evans, D.V.: Maximum wave-power absorption under motion constraints. Applied Ocean Research 3 (1981) 200–203.

    Article  Google Scholar 

  21. Evans, D.V.: A comparison of the relative hydrodynamic efficiencies of attenuator and terminator wave energy devices. School of Mathematics, Univ. of Bristol, Rep.No. AM-82–05. See also Proc. 2nd Int. Symp. Wave Energy Utilisations, Trondheim, Norway (1982) 137–154.

    Google Scholar 

  22. Count, B.M.; Jefferys, E.R.: Wave power, the primary interface. Proc. 13th Symp. Naval Hydrodynamics, Tokyo. (1980).

    Google Scholar 

  23. Count, B.M.; Miyazaki, T.: Study on floating alternator wave energy devices. J. Soc. Naval Arch. Japan 155 (1984) 164–171.

    Article  Google Scholar 

  24. Simon, M.J.: Multiple scattering in arrays of axisymmetric wave-energy devices. Part 1. A matrix method using a plane-wave approximation. J. Fluid Mechanics 120 (1982) 1–25

    Article  MATH  ADS  Google Scholar 

  25. Ambli, N.; Boke, K.; Malmo, O.; Reitan, A.: The Kvaerner multi-resonant OWC. Proc. 2nd Int. Symp. on Wave Energy Utilisation, Trondheim, Norway (1982) 275–297.

    Google Scholar 

  26. Malmo, O.; Reitan, A.: Wave-power absorption by an oscillating water column in a reflecting wall. Preprint, University of Trondheim, Norway (1984(a)).

    Google Scholar 

  27. Malmo, O.; Reitan, A.: Wave-power absorption by a finite row of oscillating water columns in a reflecting wall. Preprint, University of Trondheim, Norway (1984(b)).

    Google Scholar 

  28. Evans, D.V.: Wave-power absorption within a resonant harbour. Proc. 2nd Int. Symp. on Wave Energy Utilisation, Trondheim (1982) 371–378.

    Google Scholar 

  29. Evans, D.V.; Count, B.M.: Approximate impedance methods for wave-energy absorption by devices in harbours. Proc. Int. Workshop on ship and platform motions, Berkeley, Calif. U.S.A. (1983) 163–182.

    Google Scholar 

  30. Count, B.M.; Evans, D.V.: The influence of projecting sidewalls on the hydrodynamic performance of wave-energy devices. J. Fluid Mechanics 145 (1984) 361–376.

    Article  MATH  ADS  Google Scholar 

  31. Count, B.M.: Theoretical hydrodynamical studies on harbour systems for wave energy absorption. Central Electricity Generating Board Rep. TPRD/M/1334/N83 (1983).

    Google Scholar 

  32. Noble, B.: Methods based on the Wiener-Hopf technique. Pergamon 1958.

    Google Scholar 

  33. Evans, D.V.: The influence of projecting sidewalls on the hydrodynamic performance of wave-energy devices. University of Bristol School of Mathematics, Rep.No. AM-83–01 (1983).

    Google Scholar 

  34. Srokosz, M.A.: Some relations for bodies in a canal, with an application to wave power absorption. J. Fluid Mechanics 95 (1980) 717–741.

    Article  ADS  MathSciNet  Google Scholar 

  35. Evans, D.V.; McIver, P.: A hydrodynamic theory for wave-energy devices with projecting sidewalls in harbours. Proc. Ocean Space 85, Nihon University, Tokyo (1985).

    Google Scholar 

  36. McIver, P.; Evans, D.V.: In preparation (1985).

    Google Scholar 

  37. Evans, D.V.: Wave-power absorption by systems of oscillating surface pressure distributions. J. Fluid Mechanics 114 (1982) 481–499.

    Article  MATH  ADS  Google Scholar 

  38. Evans, D.V.: Power from water waves. Ann. Rev. Fluid Mech. 13 (1981) 157–187.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin, Heidelberg

About this paper

Cite this paper

Evans, D.V. (1986). The Hydrodynamic Efficiency of Wave-Energy Devices. In: Evans, D.V., de Falcão, A.F.O. (eds) Hydrodynamics of Ocean Wave-Energy Utilization. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82666-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82666-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82668-9

  • Online ISBN: 978-3-642-82666-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics