# Theoretical and Practical Aspects of Multigrid Methods in Boundary Element Calculations

• H. Schippers
Part of the Topics in Boundary Element Research book series (TBOU, volume 3)

## Summary

In this paper multigrid methods are advocated for the fast solution of the large nonsparse systems of equations that occur in boundary-element methods. Multigrid methods combine relaxation schemes and coarse-grid corrections. Ample attention is given to the decomposition of the system matrix in order to obtain a relaxation scheme that reduces the high-frequency components of the iteration error. It is shown that the decomposition should take the edges of the boundary into account, because they have a strong influence on the smoothing property of the relaxation scheme. The practical aspects of the multigrid method are concerned with the use of the method in boundary element calculations. The choice of the coarse-grid operators, the interactions between the grids and the implementation of the algorithm are discussed. The theoretical investigations show that the multigrid method converges more rapidly as the number of boundary elements increases. This is illustrated for two plane problems: (1) potential flow around an aerofoil and (2) interior fundamental problem of elasticity.

## Keywords

Boundary Element Coarse Grid Boundary Integral Equation Potential Flow Multigrid Method
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Alund, A., Iterative methods to compute the singularity distribution in three-dimensional panel methods, Report L-0–1 R 97, SAAB-Scania, Linköping, Sweden, 1984Google Scholar
2. 2.
Anselone, P.M., Collectively compact operator approximation theory, Englewood Cliffs, New Jersey, Prentice-Hall, 1971Google Scholar
3. 3.
Barnard, A.C.L., Duck, I.M., Lynn, M.S., and Timlake, W.P., The application of electromagnetic theory to electrocardiology, II. Numerical solution of the integral equations. Biophys. J. 7, 463–491, 1967Google Scholar
4. 4.
Berkhoff, J.C.W., Diffraction of water waves. In: Colloquium Numerical Treatment of Integral Equations (H.J.J. to Ride, ed), MC-Syllabus 41, Mathematisch Centrum, Amsterdam 1979, pp. 241–258Google Scholar
5. 5.
Brandt, A., Multi-level adaptive solutions to boundary-valve problems. Mathematics of Computations 31, 333–390, 1977
6. 6.
Brebbia, C. A., The boundary element method for engineers. Pentech Press, London 1978Google Scholar
7. 7.
Brebbia, C.A. and Walker, S., Boundary element techniques in Engineering. Butterworth, London 1980
8. 8.
Costabel, M. and Stephan, E., Curvature terms in the asymptotic expansions for solutions of boundary integral equations on curved polygons. Preprint Nr. 673, Technical University Darmstadt, Dept. Mathematics, 1982Google Scholar
9. 9.
Edwards, T.W. and Van Bladel, K., Electrostatic dipole moment of a dielectric cube. Applied Scientific Research 9, 151–155, 1961
10. 10.
Filippi, P., Layer potentials and acoustic diffraction. J. Sound and Vibration 54, 473–500, 1977
11. 11.
Hackbusch, W., Die schnelle Auflösung der Fredholmschen Integralgleichung zweiter Art. Beiträge zur Numerischen Mathematik 9, 47–62, 1981Google Scholar
12. 12.
Hackbusch, W., Multigrid convergence theory, Multigrid Methods, Proceedings, Köln 1981 (W. Hackbusch and Trottenberg, U., eds.). Lecture Notes in Mathematics, 960, pp. 177–219, Springer-Verlag, Berlin, Heidelberg, New York 1982Google Scholar
13. 13.
Hebeker, F.K, On a multigrid method to solve the integral equations of 3-D Stokes’ flow, Efficient Solutions of Elliptic Systems. Proceedings, Kiel 1984 (W. Hackbusch, ed.). Vieweg Verlag, Braunschweig/Wiesbaden 1984Google Scholar
14. 14.
Hemker, P.W. and Schippers, H., Multiple grid methods for the solution of Fredhom integral equations of the second kind. Math. Comp. 36, 215–232, 1981
15. 15.
Hess, J.L. and Smith. A.M.O., Calculation of potential flow about arbitrary bodies. Progress in Aero Science 8, 1–138, 1967
16. 16.
Hsiao, G.C., Kopp, P., and Wendland, W.L., A Galerkin collocation method for some integral equations of the first kind. Computing 25, 89–130, 1980
17. 17.
Hsiao, G.C., Kopp, P., and Wendland, W.L., Some applications of a Galerkin-collocation method for boundary integral equations of the first kind. Preprint Nr. 768, Technical University Darmstadt, Dept. Mathematics, 1983Google Scholar
18. 18.
Hsiao, G.C. and Maccamy, R.C., Solution of boundary value problems by integral equations of the first kind. SIAM Review 15, 687–705, 1973
19. 19.
Hsiao, G.C. and Wendland, W.L., A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449–481, 1977
20. 20.
Jaswon, M. A. and Symm, G.T., Integral equation methods in potential theory and elastostatics. Academic Press, London 1977
21. 21.
Jones, D.S., Integral equations for the exterior acoustic problem. Quart. J. Mech. Appl. Math. 27, 129–142, 1974
22. 22.
Martensen, E., Berechnung der Druckverteilung an Gitterprofilen in ebener Potentialströ mung mit einer Fredholmschen Integralgleichung. Arch, Rat. Mech. Anal. 3, 235–270, 1959
23. 23.
Muschelischwili, N.I., Singuläre Integralgleichungen. Akademie-Verlag, Berlin 1965
24. 24.
NAG Fortran Library Manual mark 10, Numerical Algorithms Group. Oxford 1983Google Scholar
25. 25.
Nedelec, J.C., Curved finite element methods for the solution of singular integral equations on surfaces in R3. Comp. Math. Appl. Mech. Eng. 8, 61–80, 1976
26. 26.
Nowak, Z.P., Use of the multigrid method for Laplacian problems in three dimensions, Multigrid Methods, Proceedings, Köln 1981 (W. Hackbusch and U. Trottenberg, eds.). Lecture Notes in Mathematics, 960, pp. 576–598, Springer-Verlag, Berlin, Heidelberg, New York 1982Google Scholar
27. 27.
Oskam, B. and Fray, J.M.J., General relaxation schemes in multigrid algorithms for higher order singularity methods. J. Comp. Physics 48, 423–440, 1982
28. 28.
Rizzo, -F.J., An integral equation to boundary value problems of classical elastostatics. Q. Appl. Math. 25, 83–95, 1967
29. 29.
Schippers, H., On the regularity of the principal value of the double-layer potential. J. Engineering Math. 16, 59–76, 1982
30. 30.
Schippers, H., Application of multigrid methods for integral equations to two problems from fluid dynamics. J. Comp. Physics 48, 441–461, 1982
31. 31.
Schippers, H.. Multiple grid methods for equations of the second kind with applications in fluid mechanics. Ph.D. Thesis, Mathematisch Centrum, Amsterdam 1982, published as Mathematical Centre Tracts 163Google Scholar
32. 32.
Schippers, H., Multigrid methods for boundary integral equations, NLR MP 82059 U, National Aerospace Laboratory, Amsterdam 1982, Numerische MathematikGoogle Scholar
33. 33.
Trottenberg, U., Multigrid methods: fundamental algorithms, model problem analysis and applications, Multigrid Methods, Proceedings, Köln 1981 (W. Hackbusch and U. Trottenberg, eds.). Lecture Notes in Mathematics, 960, pp. 1–176, Springer-Verlag, Berlin, Heidelberg, New York 1982Google Scholar
34. 34.
Wendland, W.L., On Galerkin collocation methods for integral equations of elliptic boundary value problems. In: Numerical Treatment of Integral Equations (J. Albrecht and L. Collatz, eds.). Intern. Ser. Numer. Math., 53, pp. 244–275, Birkhäuser, Basel 1980Google Scholar
35. 35.
Wendland, W.L., I. Asymptotic convergence of boundary element methods. II. Integral equation methods for mixed boundary value problems. Preprint Nr. 611, Technical University Darmstadt, Dept. Mathematics, 1981Google Scholar
36. 36.
Wendland, W.L., Boundary element methods and their asymptotic convergence, Lecture Notes of the CISM Summer-School on Theoretical Acoustics and Numerical Techniques, International Centre for Mechanical Sciences, Udine (Italy), 1982 (P. Filippi, ed.), to appear in: Lecture Notes in Physics, Springer-Verlag, Berlin, Heidelberg, New York 1983Google Scholar
37. 37.
Wesseling, P., A robust and efficient multigrid method, Multigrid Methods, Proceedings, Köln 1981 (W. Hackbusch and U. Trottenberg, eds.), Lecture Notes in Mathematics, 960, pp. 614–630, Springer-Verlag, Berlin, Heidelberg, New York 1982Google Scholar
38. 38.
Wolff, H., Multiple grid method for the calculation of potential flow around 3-D bodies, Preprint NW 119/82, Dept. of Numerical Mathematics, Mathematical Centre, Amsterdam 1982Google Scholar