Dynamics and Self-Organization in One-Dimensional Arrays

  • Maurice Tchuente
Conference paper
Part of the NATO ASI Series book series (volume 20)


A one-dimensional (1-D for short) array is a collection of identical finite state machines indexed by integers x of ℤ, and where any cell x can directly receive informations from its neighbours x + i, i = -n,…, n, where n is a positive integer called the scope of the array. Each machine can synchronously change its state at discrete time steps as a function of its state and the states of its neighboring machines.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BALZER R. (1967): An 8-state minimal time solution to the Firing Squad Synchronization Problem. Information and Control, 10, pp 22–42CrossRefGoogle Scholar
  2. CONWAY J. (1970): Mathematical games, Scientific American, pp 120–123 (paper written by M. GARDNER)Google Scholar
  3. DIJKSTRA E.W. (1974): Self-stabilizing systems in spite of distributed control, Communications of the ACM, (17), 11, pp 643–644CrossRefGoogle Scholar
  4. FOGELMAN SOULIE F. (1985) Contribution à une théorie du calcul sur réseaux, Thèse d’état, USMG-INPG, GrenobleGoogle Scholar
  5. GOLES E. and OLIVOS J. (1980): Comportement itératif des fonctions à multiseuil, Information and Control, (45), (3), pp 300–313CrossRefMATHMathSciNetGoogle Scholar
  6. GOLES E. and TCHUENTE M. (1984): Iterative behaviour of one-dimensional threshold automata, Discrete Applied Mathematics, 8, pp 319–322CrossRefMATHMathSciNetGoogle Scholar
  7. GOLES E. (1985): Comportement dynamique de réseaux d’automates, Thèse d’état, USMG-INPG, Grenoble.Google Scholar
  8. ROBERT F. (1985): Discrete Iterations, Academic Press, to appear.Google Scholar
  9. ROMANI F. (1976): Cellular automata synchronization, Information Sciences, 10, pp 299–318Google Scholar
  10. ROSENSTIEHL P. (1966): Existence d’automates d’états finis capables de s’accorder bien qu’arbitrairement connectés et nombreux, International Computation Centre Bulletin, 5, pp 215–244Google Scholar
  11. TCHUENTE M. (1977): Evolution de certains automates cellulaires uniformes binaires à seuil, Séminaire d’Analyse numérique, 265, GrenobleGoogle Scholar
  12. TCHUENTE M. (1981): Sur l’auto-stabilisation dans un réseau d’ordinateurs, RAIRO Theoretical Computer Science, (15), 1, pp 47–66MATHMathSciNetGoogle Scholar
  13. TCHUENTE M. (1982): Contribution à l’étude des méthodes de calcul pour des systèmes de type coopératif, Thèse d’état, USMG-INPG, GrenobleGoogle Scholar
  14. UNGER S.H. (1959): Pattern detection and recognition, Proc. IRE, pp 1737–1752Google Scholar
  15. VON NEUMANN J. (1966): Theory of Self-Reproducing Automata, A.W. BURKS ed., University of Illinois Press.Google Scholar
  16. WAKSMAN A. (1966): An optimum solution to the firing squad synchronization problem, Information and Control, 9, pp 66–78CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Maurice Tchuente
    • 1
  1. 1.CNRS-IMAG Laboratoire TIM3Saint Martin d’Hères cédexFrance

Personalised recommendations