Advertisement

Erfahrungen mit Einer Statistischen Entscheidungsunterstützung bei der Chirurgischen Behandlung des Rektumkarzinoms

  • I. Guggenmoos-Holzmann
  • B. Heinen
  • W. Gunselmann
  • P. Hermanek
Conference paper
Part of the Medizinische Informatik und Statistik book series (MEDINFO, volume 62)

Summary

For the treatment of patients with carcinoma of the mid rectum mainly three types of operations are available: rectum-saving methods, sphincter-saving methods and excisional surgery. The goal is the proper selection of patients and to realize surgery adapted to the individual situation. The treatment should be as limited as possible and as radical as necessary. In particular, the method should minimize the risk of local recurrence which is one of the chief causes of an unfavourable course of the disease.

To support the surgeon by a formal decision rule a statistical model has been developed in order to estimate the probability of local recurrence for each operation strategy given the individual status of disease. The approach takes into account the competing risk of dying without local recurrence. The rate of recurrence has been estimated separately for each operation by use of seven characteristics of disease status. The decision rule was based on a fixed difference between predicted recurrence rates.

While the rule was applied the need to further examine the precision of the predicted recurrence rates became apparent. The variability of the estimated probabilities and its implications on the decision rule is studied by means of model reduction, treating’ surgical method’ and its interactions with disease charactaristics as covariates, and by jackknife procedures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1).
    Aitchison, J: Statistical Problems of treatment allocation. J.Roy.Stat. A 133, 206–238 (1970)CrossRefGoogle Scholar
  2. 2).
    Byar, D. P., Corle, D. K.: Selecting Optimal Treatment in Clinical Trials Using Covariate Information. J.Chron.Dis. 30, 445–549 (1977)CrossRefGoogle Scholar
  3. 3).
    McCullagh, P., Nelder, J. A.: Generalized Linear Models. Chapman and Hall, London (1983)MATHGoogle Scholar
  4. 4).
    Gunselmann, W.: Prognosestellung beim Rektumkarzinom mit Hilfe des Modells von Cox. In: Nachsorge und Krankheitsverlaufsanalyse, Proc. der 25. Jahrestagung der GMDS. Hgb. Horbach, L., Duhme, C., P70–76, Springer, Berlin (1981)Google Scholar
  5. 5).
    Hermanek, P., Gunselmann, W., Altendorf, A., Horbach, L. Vorhersage von Lokalrezidiven nach Operationen von Carcinomen des mittleren Rektumdrittels. Langenbecks Arch.Chir. 354, 133–146 (1981)CrossRefGoogle Scholar
  6. 6).
    Sonquist, J. A., Morgan, J. N.: The detection of interaction effects: A report on a computer program for the selection of optimal combinations of explanatory variables. Monograph No. 35, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • I. Guggenmoos-Holzmann
    • 1
  • B. Heinen
    • 1
  • W. Gunselmann
    • 2
  • P. Hermanek
    • 3
  1. 1.Institut für Med. Statistik und DokumentationUniversität ErlangenErlangenDeutschland
  2. 2.Pharma Forschungszentrum Bayer AGWuppertal 1Deutschland
  3. 3.Abteilung für Klinische PathologieChirurgische Universitätsklinik ErlangenDeutschland

Personalised recommendations