Influence of Molecular Parameters on Laminar Non-Newtonian and on Turbulent Flows of Dilute Polymer Solutions

  • M. N. Layec-Raphalen
  • Y. Layec
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


We show that the hydrodynamic radius of Poly(ethyleneoxide) macromolecules may be very different in water and water-isopropanol mixture (90%/10%). This dimension is a function of the age of the solution in pure water. The influence of the solvent and the age (i.e. of the hydrodynamic radius-) on the properties in laminar and turbulent flows is studied.


Shear Rate Drag Reduction Hydrodynamic Radius Specific Viscosity Dilute Polymer Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cuniberti, C.: Evidence for aggregation of Poly(ethyleneoxide). Polymer 16 (1975) 306–307CrossRefGoogle Scholar
  2. 2.
    Carpenter, D.K.; Santiago, G.; Hunt, A.H.: Aggregation of polyexyethylene in dilute solution. J. Polym. Sci., Polym. Symp. 44 (1974) 75–92CrossRefGoogle Scholar
  3. 3.
    Güner, A.; Güven, O.: Molecular association in aqueous solutions of high molecular weight poly(ethyleneoxide). Makromol.Chem. 179 (1978) 2789–2791CrossRefGoogle Scholar
  4. 4.
    Bailey, F.E., Jr.; Koleske, J.V.: Poly(ethylene oxide), N.Y. (1976)Google Scholar
  5. 5.
    Shin, H.: PhD Thesis. Reduction of drag in turbulence by dilute polymer solutions. MIT (1965)Google Scholar
  6. 6.
    Mc Gary, C.W.jr.: Degradation of Poly(ethylene oxide)/J. Polym.Sci. XLVI (1960) 51–57Google Scholar
  7. 7.
    Bortel, E.; Lamot, R.: Untersuchung des Abbaus hochmolecularer Polyäthylenoxide. Makromol. Chem. 178 (1977) 2617–2628CrossRefGoogle Scholar
  8. 8.
    Barnard, B.J.S.; Sellin, R.H.J.: Degradation of dilute solutions of drag reducing polymers. Nature Phys. Sci. 236 (1972) 12–14Google Scholar
  9. 9.
    Ting, R.Y.; Little, R.C.: Characterization of drag reduction and degradation effects in the turbulent pipe flow of dilute polymer solutions. J. Applied Polym. Sci. 17 (1973) 3345–3356CrossRefGoogle Scholar
  10. 10.
    Fisher, D.H.; Rodriguez, F.: Degradation of drag reducing polymers. J. Appl. Polym. Sci 15 (1971) 2975–2985CrossRefGoogle Scholar
  11. 11.
    Kenis, P.R.: Turbulent flow friction reduction and hydrodynamic degradation of polysaccharides and synthetic polymers. J. Appl. Polym. Sci. 15 (1971) 607CrossRefGoogle Scholar
  12. 12.
    Gold, P.I.; Amar, P.K.; Swaidan, B.E.: Friction reduction degradation in dilute PEO solutions. J. Appl. Polym. Sci. 17 (1973) 333CrossRefGoogle Scholar
  13. 13.
    Hinch, E.J.; Elata, C.;: Heterogeneity of dilute polymer solutions. J. N. N. Fl. Mech. 5 (1979) 411–425CrossRefGoogle Scholar
  14. 14.
    Dunlop, E.H.; Cox, L.R.: Role of molecular aggregates in liquid drag reduction by polymers. Phys. of Fluids 20–10 (II) (1977) S203CrossRefADSGoogle Scholar
  15. 15:.
    Laufer, Z.; Jalink, H.L.; Staverman, A.J.: J. Polym. Sci.; Polym. Chem. Ed. 11 (1973) 3005Google Scholar
  16. 16.
    Gadd, G.E.: Effect of drag reducing additives on vortex stretching. Nature 217 (1968) 1040–1042CrossRefADSGoogle Scholar
  17. 17.
    Layec Y.: to be publishedGoogle Scholar
  18. 18.
    Koppel, D.E.: Analysis of Macromolecular polydispersity in intensity correlation spectroscopy: the method of cumulants. J. Chem. Phys. 57 (1972) 4814–4820CrossRefADSGoogle Scholar
  19. 19.
    Layec-Raphalen, M.N.; Wolff, C.: On the shear thickening behaviour of dilute solutions of chain macromolecules. J. N. N. Fl. Mech. 1 (1976) 159–176CrossRefGoogle Scholar
  20. 20.
    Kato, T.; Nakamura, K.; Kawaguchi, M.; Takahashi, A.: Polym. J. 13–11 (1981) 1037Google Scholar
  21. 21.
    Layec, Y.; Layec-Raphalen, M.N.: Instability of dilute poly(ethyleneoxide) solutions. J. Phys. Lett. 44 (1983) L121 - L128CrossRefGoogle Scholar
  22. 22.
    Yamakawa, H.: Modern theory of polymer solutions. New-York, Harper et Row 1971Google Scholar
  23. 23.
    Flory, P.J.: Principles in polymer chemistry. New York, Cornell Univ. press 1963Google Scholar
  24. 24.
    Chauveteau, G.; Ghoniem, S.; Moan, M.: Effet del’entrée sur les écoulements laminaires de solutions de polymère. C. R. Acad. Sci. (Paris)Google Scholar
  25. 25.
    Ouibrahim, A.; Fruman, D.H.: Characteristics of HPAM dilute polymer solutions in three elongational flow situations. J. N. N. F1. Mech. 7–4 (1980) 315–332Google Scholar
  26. 26.
    Ambari, A.: Ecoulement des solutions aqueuses diluées de polyoxyethylene dans une fente rectangulaire très allongée en mince paroi. C.R. Acad. Sci. (Paris) 289 (1979) 1–4Google Scholar
  27. 27.
    Layec-Raphalen, M.N.; Wolff, C.: Shear rate dependence of the association of high molecular weight macromolecules in dilute solution. Rheology, Vol. 2, 303-, Ed. G. Astarita et al., Plenum Press, 1980Google Scholar
  28. 28.
    Wolff, C.: Comparaison des courbes de viscosité intrinsèque non-newtonienne obtenues avec différents types de polymères. J. Phys. 32 (1971) 263Google Scholar

Copyright information

© Springer, Berlin Heidelberg 1985

Authors and Affiliations

  • M. N. Layec-Raphalen
    • 1
  • Y. Layec
    • 1
  1. 1.Laboratoire d’Hydrodynamique MoléculaireFaculté des SciencesBrest cedexFrance

Personalised recommendations