The Influence of Molecular Weight and Molecular Weight Distribution on Drag Reduction and Mechanical Degradation in Turbulent Flow of Highly Dilute Polymer Solutions

  • B. Gampert
  • P. Wagner
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)


The influence of the molecular weight and the molecular weight distribution on the drag reduction and the mechanical degradation in turbulent flow is investigated for highly pure laboratory synthesized polyacrylamides with mean molecular weights between 1.1 and 9.2·106 g/mol.


Reynolds Number Wall Shear Stress Molecular Weight Distribution High Reynolds Number Drag Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patterson, R.W.; Abernathy, F.H.: Turbulent Flow Drag Reduction and Degradation with Dilute Polymer Solutions. J. Fluid. Mech. 43, 4 (1970) 689–710.CrossRefADSGoogle Scholar
  2. 2.
    Berman, N.S.: Drag Reduction of the Highest Molecular Weight Fractions of Polyethylene Oxide. Phys. of Fluids 20, 5 (1977) 715–718.CrossRefADSGoogle Scholar
  3. 3.
    Kulicke, W.-M.; Kniewske, R.; Klein, J.: Preparation, Characterization, Solution Properties and Rheological Behaviour of Polyacrylamide. Prog. Polym. Sci. 8 (1982) 373–468.CrossRefGoogle Scholar
  4. 4.
    Kulicke, W.-M.; Böse, N.: [n]–M-Relationship for Polyacrylamide in Aqueous 0.1 M Nat SO4 Solution. Polym. Bulletin 7 (1982) 205–210.CrossRefGoogle Scholar
  5. 5.
    Lumley, J.L.: Drag reduction by additives. Ann. Reviews of Fluid Mech. 1 (1969) 367–383.CrossRefADSGoogle Scholar
  6. 6.
    Elata, C.; Lehrer, J.; Kahanovitz, A.: Turbulent Shear Flow of Polymer Solutions. Israel Journal of Technology 4, 1 (1966) 87–95.Google Scholar
  7. 7.
    Rouse, P.E. Jr.: A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. J. Chem. Phys. 21 (1953) 1272–1820.CrossRefADSGoogle Scholar
  8. 8.
    Fuller, G.G.; Leal, L.G.: Flow birefringence of dilute polymer solutions in two-dimensional flows. Rheol. Acta 19 (1980) 580–600.CrossRefGoogle Scholar
  9. 9.
    Bueche, F.: Mechanical Degradation of High Polymers. J. Appl. Polymer Sci. IV, 10 (1960) 101–106.CrossRefGoogle Scholar
  10. 10.
    Durst, F.; Haas, R.; Interthal, W.; Keck, T.: Polymerwirkung in Strömungen–Mechanismen und praktische Anwendungen. Chem.-Ing.-Tech. 54 (1982) Nr. 3, 213–221.CrossRefGoogle Scholar
  11. 11.
    Durst, F.; Haas, R.; Interthal, W.: Laminar and turbulent flows of dilute polymer solutions: a physical model. Rheol. Acta 21 (1982) 572–577.CrossRefGoogle Scholar
  12. 12.
    Bird, R.B.; Hassager, 0.; Armstrong, R.C.; Curtiss, C.F.: Dynamics of Polymeric Liquids 2. New York: J. Wiley & Sons 1977.Google Scholar
  13. 13.
    Donohue, G.L.; Tiederman, W.G.; Reischman, M.M.: Flow visualization of the near-wall region in a drag-reducing channel flow. J. Fluid Mech. 53, 3 (1972) 559–575.CrossRefADSGoogle Scholar
  14. 14.
    Gampert, B.; Wagner, P.: Experimentelle Untersuchung turbulenter Rohrströmungen hochreiner wäßriger PolyacrylamidLösungen, Rheol. Acta 21 (1982) 578–581.Google Scholar
  15. 15.
    Wagner, P.: Der Einfluß molekularer Parameter auf das Verhalten turbulent strömender Polymerlösungen. Dissertation, Universität-GH-Essen, 1984.Google Scholar

Copyright information

© Springer, Berlin Heidelberg 1985

Authors and Affiliations

  • B. Gampert
    • 1
  • P. Wagner
    • 1
  1. 1.StrömungsmechanikUniversität-GH-EssenEssen 1West Germany

Personalised recommendations