Skip to main content

Abstract

Experiments are reported in which.a concentrated polymer solution is injected into the centre of a turbulent pipe flow. Drag reduction is obtained even if the polymer forms a liquid thread which is conveyed in the core region of the flow, i.e. no significant part of the injected polymer is present in the near-wall region. This type of drag reduction differs from that found in homogeneous solutions and seems to be due to an interaction between the polymer thread and the large-scale structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. VIRK, P.S., Drag reduction fundamentals, AIChE J., 21 (1975), 625–656.

    Article  Google Scholar 

  2. ELATA, C., J. LEHRER, A. KAHANOVITZ, Turbulent shear flow of polymer solutions, Israel J. Techn., 4 (1966), 87–95.

    Google Scholar 

  3. LOGAN, S.E., Laser velocimeter measurement of Reynolds stress and turbulence in dilute polymer solutions, AIAA J., 10 (1972) 962–964.

    Article  ADS  Google Scholar 

  4. SCHUM ER, P., W. THIELEN, Structure of turbulence in viscoelastic fluids, Chem. Eng. Commun., 4 (1980) 593–606.

    Article  Google Scholar 

  5. ACHIA, B.U., D.W. THOMPSON, Structure of the turbulent boundary layer in drag-reducing pipe flow, J. Fluid Mech., 81 (1977) 439–464.

    Article  ADS  Google Scholar 

  6. MIZUSHINA, T., H.USUI, Reduction of eddy diffusion for momentum and heat in viscoelastic fluid flow in a circular tube, Phys. Fluids, 20 (1977) S100 - S108.

    Article  ADS  Google Scholar 

  7. Wells, C.S., J.G. SPANGLER, Injection of a drag-reducing fluid into turbulent pipe flow of a Newtonian fluid, Phys. Fluids, 10 (1967) 1890–1894.

    Article  ADS  Google Scholar 

  8. VLEGGAAR, J., Studies on drag reduction, Thesis, University of Amsterdam (1973).

    Google Scholar 

  9. VLEGGAAR, J., M. TELS, Drag reduction by polymer threads, Chem. Eng. Sci., 28 (1973) 965–968.

    Article  Google Scholar 

  10. BEWERSDORFF, H.W., K. STRAUSS, Turbulente Diffusion und Widerstandsverminderung in Rohrströmungen, Rheol. Acta, 18 (1979) 104–107.

    Google Scholar 

  11. VLEGGAAR, J., M. TELS, Heat transfer in heterogeneous drag reduction system, Int. J. Heat and Mass Transfer, 16 (1973) 1629–1632.

    Article  Google Scholar 

  12. STENBERG, L.-G., T. LAGERSTEDT, O. SEHLEN, E.R. LINDGREN, Mechanical mixing of polymer additive in turbulent drag reduction, Phys. Fluids, 20 (1977), 858–859.

    Article  ADS  Google Scholar 

  13. STENBERG, L.G., T. LAGERSTEDT, E.R. LINDGREN, Polymer additive mixing and turbulent drag reduction, Phys. Fluids, 20 (1978) S276 - S279.

    Article  ADS  Google Scholar 

  14. BEWERSDORFF, H.W., Heterogene Widerstandsverminderung bei turbulenten Rohrströmungen, Rheol. Acta, 23 (1984).

    Google Scholar 

  15. MICHELE, J., Zur Rheometrie viskoelastischer Fluide mit der KegelPlatte-Anordnung, Rheol. Acta, 17 (1978) 42–68.

    Google Scholar 

  16. BEWERSDORFF, H.W., Effect of centrally injected polymer thread on drag in pipe flow, Rheol. Acta, 21 (1982) 587–589.

    Google Scholar 

  17. Mc COMB, W.D., L.H. RABIE, Development of local drag reduction due to nonuniform polymer concentration, Phys. Fluids, 22 (1979) 183–185.

    Article  ADS  Google Scholar 

  18. Mc COMB, W.D., L.H. RABIE, Local drag reduction due to injection of polymer solutions into turbulent flow in a pipe, AIChE J., 28 (1982) 547–565.

    Article  Google Scholar 

  19. BERMAN, N.S., Flow time scales and drag reduction, Phys. Fluids, 20 (1977) S168 - S174.

    Article  ADS  Google Scholar 

  20. GOREN, Y., J.F. NORBURY, Turbulent flow of dilute aqueous polymer solutions, Trans. ASME, J. Basic Eng., 89 (1967) 814–822.

    Article  Google Scholar 

  21. TULLIS, J.P., K.L.V. RAMU, Drag reduction in developing pipe flow with polymer injection, Int. Conf. on Drag Reduction, Cambridge (1974) Paper G3.

    Google Scholar 

  22. RANU, K.L.V., J.P. TULLIS, Drag reduction and velocity distribution in developing flow, J. Hydronautics, 10 (1976) 55–61.

    Article  ADS  Google Scholar 

  23. HINCH, E.J., C. ELATA, Heterogeneity of dilute polymer solutions, J. Non-Newtonian Fluid Mech., 5 (1979) 411–425.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer, Berlin Heidelberg

About this paper

Cite this paper

Bewersdorff, HW. (1985). Heterogeneous Drag Reduction in Turbulent Pipe Flow. In: Gampert, B. (eds) The Influence of Polymer Additives on Velocity and Temperature Fields. International Union of Theoretical and Applied Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82632-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-82632-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-82634-4

  • Online ISBN: 978-3-642-82632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics